
GITHUB FOR WRITING PAPERS TOGETHER

It can make sense for co-authors to have a GitHub repository and project board together. It
requires a bit of work at the beginning, but once it is set up, it is very easy and great. It might
seem complicated at �rst, but one can get used to it quickly.

GitHub is an online platform that let's you save and share your �les with your co-authors.
It let's you save �les in a way that allows you to restore any earlier version of the �le easily.
No former version of your paper will ever get lost. The versions get saved in the structure of a
directed, acyclic graph, which gives you a great overview and many possibilities to work on a
project simultaneously without any con�icts between �les. If you make changes to �les, Github
let's you see the previous and current version of the �le side by side and marks which lines
have been edited. It is very easy to compare. It is possible for everyone in the project to add
comments to each change or line.

Everyone has a local copy of the �les on their laptop and can push changes they make to
the �les onto Github and can pull changes made by others from Github onto their own laptop.

Working together on a project on Github is great, because you have an amazing overview and
if one person messes up, it is so easy to restore an earlier version. If you get confused, you can
easily look up, what was written before. All drafts are automatically saved and can't get lost.

Github also allows you to create project boards. You can collect all the things that are left
to do in the board. For example you could have a list there of all the lemmata that you still
need to prove or all the ideas for future papers you come up with during your work on the
project. It is a great tool for keeping organized.

Since setting it all up is the hardest part, I created this small pdf for help. I am not a se-
nior software engineer and I am not deep into the GitHub universe. I am just trying to write
mathematical papers with other people and managed to make it work for us. If you dislike how
I described how to set everything up or if you follow these instruction and you get errors, please
don't hate me.

If you experience di�culties, here are some good places to read:
https://docs.github.com/en

https://git-scm.com/doc

Kind regards to you
� Sira

1

https://docs.github.com/en
https://git-scm.com/doc

Contents

1. Get onto GitHub 2

2. Setting up git 2

2.1. Installing git 2

2.2. Con�gure git 3

2.3. SSH key 3

3. Create a new repository 4

4. Add something to your repository and push it to GitHub 4

5. Become or invite a collaborator of an already existing repository 5

6. Beeing a collaborator 5

7. Overview over some git commands 6

8. Add a .gitignore 7

9. Pdf-Builder for LaTeX �les 7

10. Some useful terminal commands 8

11. Create a project board 8

For the sake of examples, we will assume the following in this whole document:

Your name is: Chiara Crunchcrystal

Your email address is: chiara.crunchcrystal@example.com

Your username will be: ChiaraCrunchcrystal

1. Get onto GitHub

Go to https://nerdstagram.com/ and create a new account on that website. Click Sign up.
Follow the prompts to create your personal account. (More information: https://docs.github.
com/en/get-started/quickstart/creating-an-account-on-github)

2. Setting up git

2.1. Installing git.

2.1.1. Linux debian �avored (Ubuntu, Mint).

sudo apt-get install git

(More information: https://git-scm.com/download/linux or https://docs.github.com/en/
get-started/getting-started-with-git/set-up-git)

2.1.2. Mac.

(1) Is Homebrew installed? If not, then install Homebrew �rst by opening a terminal and
typing:
/bin/bash -c "\$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

(More information: https://brew.sh/)
(2) Install git:

brew install git

(More information: https://git-scm.com/download/mac or https://docs.github.

com/en/get-started/getting-started-with-git/set-up-git)

2

https://nerdstagram.com/
https://docs.github.com/en/get-started/quickstart/creating-an-account-on-github
https://docs.github.com/en/get-started/quickstart/creating-an-account-on-github
https://git-scm.com/download/linux
 https://docs.github.com/en/get-started/getting-started-with-git/set-up-git
 https://docs.github.com/en/get-started/getting-started-with-git/set-up-git
https://brew.sh/
https://git-scm.com/download/mac
 https://docs.github.com/en/get-started/getting-started-with-git/set-up-git
 https://docs.github.com/en/get-started/getting-started-with-git/set-up-git

2.2. Con�gure git.

(1) Set git username for every repository on your computer:

git config --global user.name "Chiara Crunchcrystal"

Check if it worked by typing:

git config --global user.name

If you get:

$ git config --global user.name

> Chiara Crunchcrystal

then it worked.
(More information https://docs.github.com/en/get-started/getting-started-with-git/
setting-your-username-in-git)

(2) Set commit email address:

git config --global user.email "chiara.crunchcrystal@example.com"

Check if it worked by typing:

git config --global user.email

If you get:

$ git config --global user.email

> chiara.crunchcrystal@example.com

then it worked.
(More information:
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/

managing-email-preferences/setting-your-commit-email-address?platform=mac)
(3) Add the email address to your account on GitHub, if it is not already there.

2.3. SSH key.

(1) Do you already have a ssh key? Find out:

ls -al ~/.ssh

Suppose yes. Then you can see a

[something].pub

(just something ending with .pub) in the list in the terminal. Type:

cat ~/.ssh/name.pub

Copy what you get.
(2) If you don't already have a ssh key:

ssh-keygen -t rsa

Press ENTER to accept the default location. Then the ssh-keygen utility prompts you for
a passphrase. Type in a passphrase or hit ENTER to accept the default (no passphrase).
Then either repeat the passphrase again or press enter again for con�rmation. Now you
can:

cat ~/.ssh/id_rsa.pub

Copy what you get.
(3) Go on GitHub → Settings → SSH and GPG keys → New SSH key → paste

(More information: https://docs.github.com/en/authentication/connecting-to-github-with-ssh/
generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent)

3

https://docs.github.com/en/get-started/getting-started-with-git/setting-your-username-in-git
https://docs.github.com/en/get-started/getting-started-with-git/setting-your-username-in-git
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address?platform=mac
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address?platform=mac
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

3. Create a new repository

Choose a location on your laptop for your repository. For example:

~/Documents

Go to that location by typing into the terminal:

cd ~/Documents

Think of a good folder name for your repository. Let's say you choose CrunchcrystalRepo. Create
a new folder with that name:

mkdir CrunchcrystalRepo

Go into that folder an initiate a new git repository:

cd CrunchcrystalRepo

git init

(More information: https://docs.github.com/en/get-started/using-git/about-git)

4. Add something to your repository and push it to GitHub

(1) First you have to create a new �le in your CrunchcrystalRepo-Folder. If you just want
to try something out, you could do:

touch test.txt

nano test.txt

then write anything. Then: X → Y → ENTER.
(2) Now you want to stage that change. Type:

git add test.txt

Or:

git add .

The later option just adds all �les in that folder.
(3) Now commit your changes. You can either do:

git commit -a --allow-empty-message -m ' '

and be done or you can do:

git commit

and then you have to type a little commit message and then: X → Y → ENTER.
(It allows you to give a bit of context and explain the changes you have made.)

(4) Now go on the GitHub webpage and create a new repository with the name Crunchcrys-
talRepo. Just follow the prompts.

(5) Type in the terminal:

git remote add origin git@github.com:ChiaraCrunchcrystal/CrunchcrystalRepo.git

(6) Push your Repo with your new �le onto GitHub:

git push origin -u main

If you now go on the GitHub webpage and are logged in, you should be able to see your
new �le test.txt in the CrunchcrystalRepo there.

4

https://docs.github.com/en/get-started/using-git/about-git

5. Become or invite a collaborator of an already existing repository

(1) The person with the admin rights to that repository has to go into that repository on
GitHub under Settings and under Access click Collaborators. There the admin has to
invite a person as a collaborator. Then that person can accept that invitation.

(2) If you got invited and accepted: Determine a good location for the local copy of that
repository on your laptop and go there with the cd command. On GitHub, go to that
repository. There is a green rectangle with the text <> Code that you can click. Do that.
Suppose this repository has the name Chiara-Kevin and was created by kevinnimmersatt.
Then, under SSH, you should now be able to see something like:

git@github.com:kevinnimmersatt/Chiara-Kevin.git

Type the following in your terminal:

git clone git@github.com:kevinnimmersatt/Chiara-Kevin.git

Now you should have a local copy of that repository on your laptop.

6. Beeing a collaborator

(1) If you have an open terminal and you are in the folder with the repository in which you
are working with your co-authors and if you type

git branch

and if the terminal gives you a list in which main is marked, then do not make any
changes and do not add or commit or push anything. Except you all agreed that that
would be okay to do. But even in that case: Type

git pull

�rst in order to make sure you have the most up-to-date version of that repository as
your local copy and make sure no one else is making any changes simultaneously in order
to avoid con�icts, chaos and drama.

(2) Git allows you to safe all versions of your repository in a directed, acyclic graph struc-
ture. So all versions of your repository get ordered in a directed, acyclic graph (DAG).
When you start out with a repository, there only exists the main branch. Your graph
is just a line and every time you commit something, another point gets added to that line.

If you work together on a project with multiple people and some people make changes
at the same time, that can lead to con�icts between the �les. To avoid that, every per-
son can create their own working branch. For example if two people Chiara and Kevin
have a project together, there could be the main branch, a branch called Chiara and a
branch called Kevin. If Chiara makes changes in the Chiara branch and Kevin makes
changes in the Kevin branch, there won't be any con�icts, if they push their changes
onto their branch to GitHub. If a person is happy with their changes, this person can
make a pull request on the GitHub webpage. If the other person is also happy with these
changes, the pull request can get accepted and then the working branch of that person
gets merged into the main branch, meaning: The main branch will get updated with
these changes. Then everyone on their laptop has to checkout the main branch and pull
the latest version in order to update their local copy.

5

If you want to make changes to the repository, the safest way is to �rst do:

git pull

And then creating a new branch for you to work on. You do it like this:

git checkout -b branchname

If you now type:

git branch

you should see your new branch and the main branch in the list that
appears in the terminal. You can switch branches by typing:

git checkout branchname

If you want to delete a branch again, you can do:

git branch -d branchname

If you are sure you are on your working branch, you can start to make changes.

7. Overview over some git commands

Git command What it does

git init Initiates a new repository.

git add Stages changes.

git commit Saves everything that has been staged into a new com-
mit.

git branch Tells you the branch that you are on.

git checkout branchname Let's you switch to the branch branchname.

git checkout -b branchname Creates a new branch with the name branchname and
switches to that branch.

git branch -d branchname Deletes the branch with the name branchname.

git log Shows you the commit logs. (More information:
https://git-scm.com/docs/git-log)

git push origin -u branchname Pushes your local changes onto the branch branchname
on GitHub.

git pull repositoryname Builds in the changes of a di�erent repository called
repositoryname into the curent branch.

git rebase Take all the changes that were committed on one
branch and replay them on a di�erent branch. (This
is used in case of merge con�icts. See: https://

git-scm.com/book/en/v2/Git-Branching-Rebasing

git status Let's you see whether or not you are up-to-date (https:
//git-scm.com/docs/git-status)

6

https://git-scm.com/docs/git-log
https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://git-scm.com/docs/git-status
https://git-scm.com/docs/git-status

8. Add a .gitignore

If you want to work on tex �les with your co-authors, but don't want all the .aux, .log, .out, .gz
and .pdf �les in your repository on GitHub, you can add a .gitignore �le to your repo, which
makes that all �les ending with .aux, .log, .out, .gz or .pdf get ignored if you add, commit and
push.

Go to your repo in the terminal. Type:

touch .gitignore

nano .gitignore

Add the following text:

ignore generated aux, log, out, gz and pdf files,

**/*.aux

**/*.log

**/*.out

**/*.gz

**/*.pdf

And now:

git add .gitignore

Commit and push your changes.

If you already have �les in your repo on GitHub that you don't want there, you can

git rm -f filename

9. Pdf-Builder for LaTeX files

If you want to make sure your tex �les can be compiled globally and not just on your own
laptop with your speci�c settings and you would like to have global pdf �les and you would
not like your repository to be �lled with random pdfs, then you can add something to your
repo that automatically creates pdf-�les from all .tex-�les in the repository and uploads them as
pdf-�les.zip. Clone the latex-pipeline repo to a good place on your laptop. Not in the repository
you want to use it in.

git clone https://github.com/jakdimi/latex-pipeline.git

Copy the folder .github from there into your repository. Then add and commit the changes and
push them to GitHub. Create a new tag (it has to start with a v):

git tag v0.0.1

Push it and create a new release:

git push origin --tags

Now you have to wait for the build and see if it fails or not. You can see protocols and all that
on GitHub in your repository under Actions. If the build was successful, you can go to your
repo on GitHub and on the right side under Releases you can click on the latest release and �nd
the pdf-�les.zip there.

Remark: When I �rst tried this, I ran into some trouble because of my image paths. I had several

folders and subfolders in my repository. I had the images I used in tex �les in the same folder as the tex

�les and just referred to them by their name. Locally I could compile my tex �les, but the builds failed.

I had to change the reference to the images to the path of the image in that repository. For example:

Suppose I have an image x.jpg that I want to use in a tex �le X.tex. Both x.jpg and X.tex are in a

folder called c which is in a folder called b which is in a folder called a in the repository. I had to refer

to x.jpg in X.tex like this:

\includegraphics[width=1\textwidth]{a/b/c/x}

7

10. Some useful terminal commands

Command What it does

cd foldername Go to the folder called foldername (cd for change di-
rectory).

cd .. Moves up one folder.

ls Shows you a list of all �les.

ls foldername Shows you a list of all �les in the folder foldername.

mkdir foldername Creates a new folder foldername.

.\�le Opens the �le that is here and is called �le.

cat �lename Tells you the content of a �le (cat for concatenate).

nano �lename Opens the �le �lename and let's you edit it. It's a text
editor. Some people prefer vim. I can never escape
vim.

rm �lename Deletes the �le named �lename (rm for remove).

mv �lename foldename Moves the �le �lename into the folder foldername.

cp folder1/�le.txt folder2 Copies the �le �le.txt from folder1 to folder2.

grep -R 'string' dir/ Searches for a string string in a folder dir/.

11. Create a project board

On GitHub go to Projects. In the green rectangle click on the downwards arrow. Choose New
Project. Click New Project. Create project board. Edit it however you want. Next to the
project board name on top on the right there are three little dots. Click them. Go to Settings.
Manage access. Invite collaborator.

8

	1. Get onto GitHub
	2. Setting up git
	2.1. Installing git
	2.2. Configure git
	2.3. SSH key

	3. Create a new repository
	4. Add something to your repository and push it to GitHub
	5. Become or invite a collaborator of an already existing repository
	6. Beeing a collaborator
	7. Overview over some git commands
	8. Add a .gitignore
	9. Pdf-Builder for LaTeX files
	10. Some useful terminal commands
	11. Create a project board

