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Abstract. We consider any classical Grassmannian geometry Γ, that is, any projective or
polar Grassmann space. Suppose lines have size s + 1. Then we classify all sets of size s + 1
with the property that no object of opposite type in the corresponding building, is opposite
every point of the set. It turns out that such sets are either lines, or hyperbolic lines in
suitable residues isomorphic to (symplectic) generalised quadrangles (where the restriction in
parentheses only holds for rank at least 3; if Γ has rank 2 then any hyperbolic line of size s+ 1
does the job). This is a far-reaching extension of a famous and fundamental result of Bose &
Burton in the 1960s.

1. Introduction

A Lie incidence geometry of classical type is a j-Grassmannian arising from either a projective
space or a polar space. Hence, the point set of such geometry is the set of all (singular) subspaces
of projective dimension j − 1 of a given projective or polar space, and a line is the set of such
subspaces containing a given subspace of dimension j− 2, and contained in a given subspace of
dimension j, if subspaces of the latter dimension exist (otherwise we drop this condition). Such
geometries turn up in different circumstances, but in many cases they appear as geometries
embedded in some projective space. In these cases, the lines of the Lie incidence geometry ∆
are simply lines of the ambient projective space. However, there are cases in which lines of the
projective space, that are entirely contained in ∆, exist, without forming a line of ∆. This has
been described by Cohen & Cooperstein in [6]. In fact they classify all projective varieties that
show such behaviour. Kasikova & Van Maldeghem [7] captured such “pseudo” lines under the
name geometric lines and gave an abstract definition: A geometric line is a set of points with
the property that each object of opposite type is opposite either none, or all, except exactly one
point of the set. In the present paper, we introduce a “weaker” definition in the finite case
and still prove that the sets we obtain are geometric lines: A geometric line is a set of points
of the same size as a line, such that no object in the geometry is opposite all points of the set
(opposition in the sense of spherical buildings).

Our motivation is two-fold. A first motivation is that – applied to ordinary projective spaces –
this generalises in a very natural way the work of Bose & Burton [1] to arbitrary Grassmannians
of projective and polar spaces. It is known that, in a polar space with s + 1 points per line,
any set of s points admits an opposite point. That means there exists a point not collinear
to any given set of s points. This is not true for s + 1, as lines are counterexamples. In this
minimal case, it is natural to ask for a classification of all counterexamples. This can be phrased
as a Segre-like or extremal problem as follows: If a set T of points does not admit a common
opposite, then |T | is at least s + 1; what happens if equality occurs? At the same time, the
answer to that question lays a solid basis for investigating the analogues of blocking sets in Lie
incidence geometries (a blocking set in the classical sense being a set of points of a projective
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space “blocked” by every hyperplane; note a hyperplane blocks a point if, and only if, it is not
opposite to it).

A second motivation, which in fact initiated this work, was a problem arising in [4]. In order to
decompose an arbitrary sequence of perspectivities into a sequence of projectivities of a certain
prescribed type, we had to find a point opposite four arbitrary, given points of a certain Lie
incidence geometry. This is easy, if the ground field has size at least 4, but over the field
F3, this problem gave rise to exactly the question sketched in the previous paragraph with
s = 3. The solution for s = 3 is not much simpler than the general case, and so we answer
this question in full generality and for all possible Grassmannians, starting with the classical
types here, and continuing with the exceptional geometries in [5]. The reason to not include
the exceptional case in the present paper is that it requires different methods and it is handled
in the framework of parapolar spaces, which is not needed in the classical case, where one only
needs some background on projective and polar spaces.

2. Statement of the Main Result

We assume the reader is familiar with the basics on (finite) projective and polar spaces. We
say that a polar space of rank r ≥ 2 has order (s, t) if every line carries exactly s + 1 points
and every submaximal subspace (that is, a singular subspace of projective dimension r − 2) is
contained in exactly t+ 1 maximal singular subspaces (that is, singular subspaces of projective
dimension r − 1, sometimes also referred to as generators). Every singular subspace of a polar
space of order (s, t) is a projective space of order s.

A symplectic polar space is the polar space associated to a non-degenerate alternating form,
or, equivalently, to a symplectic polarity of a projective space. A parabolic quadric is a non-
degenerate quadric in a projective space of even dimension at least 4. A hyperbolic line in a
polar space ∆ is a set of points collinear to every point collinear to two given non-collinear
points. In other words: It is a set of points of the form ({x, y}⊥)⊥ where x and y are two
non-collinear points, and where ⊥ denotes as usual the collinearity relation.

A crucial notion for the present paper is that of opposition. In a projective space, two subspaces
are opposite if they are complementary, that is, they are disjoint and together generate the whole
space. In a polar space two subspaces are opposite if no point of either of them is collinear to
all points of both of them. They automatically have the same projective dimension.

We first phrase the assumptions of our main results uniformly in building theoretic terms, and
only afterwards we specify to projective and polar spaces. Concerning the building theoretic
notions, we refer to the literature, in particular the standard reference [8]. We just recall that
we see buildings as simplicial complexes in which the maximal simplices are called chambers
and the submaximal ones (or next-to-maximal ones) panels. A building is thick if every panel
is contained in at least three chambers. It is called spherical if its apartments are finite (which
is of course automatic if the whole building is finite, as we will assume). The automorphism
group of a single apartment of a building is a Coxeter group, to which a Coxeter diagram can
be attached, and we use Bourbaki labeling of the types [2]. For each thick building ∆ , say of
type Xn, and each type, say i ∈ {1, 2, . . . , n}, there is a unique point-line geometry where the
points are the vertices of type i of ∆ and the lines are the sets of vertices of type i completing
a given panel, obtained from a chamber by removing the vertex of type i, to a chamber. This
geometry is often called a Lie incidence geometry (of type Xn,i).

Theorem A. If in an irreducible thick finite classical spherical building ∆ of type Xn, n ≥ 2,
the panels of cotype {i} are s-thick (that is, every panel of cotype {i} is contained in precisely
s + 1 chambers), then every set T of s + 1 vertices of type i of ∆ admits a common opposite
vertex except precisely in the following four cases.

(1) The set T is a line in the corresponding Lie incidence geometry of type Xn,i.
(2) ∆ is the building corresponding to a symplectic polar space of rank at least 3 and T is a

hyperbolic line in the link of a simplex of type {1, 2, . . . , i− 1} of the latter.
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(3) ∆ is the building corresponding to a parabolic quadric and T is a set of generators containing
a common singular subspace U of codimension 2 in each member of T such that in the residue
of U , which is a generalised quadrangle, the set T is a regulus (the set of lines intersecting
two given disjoint lines).

(4) ∆ is a generalised quadrangle of order (s, s) and T is either a hyperbolic line or a dual
hyperbolic line.

For projective spaces, this theorem can be stated as follows. Recall that the empty projective
subspace has dimension −1 by convention.

Corollary 2.1. Let 0 ≤ k < n be integers, and let q be a prime power. Let T be a set of q + 1
k-dimensional subspaces of PG(n, q). If no (n − k − 1)-space is disjoint from each member of
T , then there exist a (k − 1)-space U and a (k + 1)-space W such that T coincides with the set
of k-spaces containing U and contained in W .

For polar spaces we have the following formulation (excluding the rather trivial case of an
asymmetric grid).

Corollary 2.2. Let Γ be a polar space of rank r at least 2 and order (s, t). Let T be a set of
either s+ 1 singular subspaces of Γ of dimension k ≤ r− 2, or t+ 1 maximal singular subspaces
if t > 1, or s + 1 maximal singular subspaces of the same natural system if t = 1. Then there
exists a singular subspace of dimension k opposite each member of T , except if

(i) k ≤ r − 2 and all members of T contain a given (k − 1)-dimensional subspace and are
contained in a given (k + 1)-dimensional singular subspace;

(ii) k = r − 1, Γ is not hyperbolic and all members of T contain a given (r − 2)-dimensional
subspace;

(iii) k ≤ r − 2, Γ is symplectic, and all members of T contain a given (k − 1)-dimensional
subspace in the residue of which they form a hyperbolic line;

(iv) k = r − 1, Γ is either parabolic or hyperbolic, and all members of T contain a given
(r − 3)-dimensional subspace in the residue of which they form a regulus.

(v) r = 2, s = t, and T is either a hyperbolic line of length s+ 1, or a regulus of size s+ 1.

In the last case, T is half of a subquadrangle of order (1, s) or (s, 1), respectively.

There is a rather intriguing corollary of our main results. We state it as our second main result.
It makes a connection with a notion defined in [7], namely, a geometric line, that is, a set L of
vertices of common type i such that for every vertex v of opposite type, either exactly one or
all members of L are not opposite v.

Theorem B. If in an irreducible thick finite classical spherical building ∆ of type Xn, n ≥ 2,
the panels of cotype {i} are s-thick (that is, every panel of cotype {i} is contained in precisely
s+1 chambers), then a set T of vertices of type i of ∆ is a geometric line in the i-Grassmannian
geometry (of type Xn,i) if, and only if, it has size s+ 1 and does not admits a common opposite
vertex.

The funny thing is that there is no obvious direct and general connection between geometric
lines and the sets T of s+ 1 vertices that we are considering. The proof of Theorem B consists
of observing that both notions provide the same objects, both after proofs of some pages. Only
in Lemma 3.7 where we treat the case of points in a polar space, we are able to use the notion
of projective line to obtain our classification. But the proof is not as direct as one would like to.
In particular, we also provide an alternative proof of the same result in the special case where
the polar space is a related to a quadric, and this one is shorter and does not use the notion of
projective line, see Lemma 3.5.

Another corollary is the following.

Corollary 2.3. If in an irreducible thick finite classical spherical building ∆ of type Xn, n ≥ 2,
the panels of cotype {i} are s-thick (that is, every panel of cotype {i} is contained in precisely
s+ 1 chambers), then every set T ′ of s vertices of type i of ∆ admits a common opposite vertex.
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Proof. We can always complete T ′ to a set T of s + 1 vertices by adding a vertex such that T
is not a set as in the conclusion of Theorem A. �

Remark 2.4. There is s a notion of split building. Without defining this in general, we mention
that, in the finite classical case, this concerns the projective spaces, the symplectic polar spaces
(which are then said to be of type Cn), the parabolic polar spaces (type Bn) and the oriflamme
complexes of hyperbolic polar spaces (type Dn). These have not only a Coxeter diagram at-
tached, but more specialised a Dynkin diagram, where nodes correspond to fundamental roots
of a root system. Then the cases in the conclusions of Theorem A, where the set T is not a
line in the Lie incidence geometry of type Xn,i, occur precisely when i represents a short root
in the root system corresponding to the Dynkin diagram. This behaviour will sustain in the
exceptional case.

3. Proofs of the main results

First we recall the following extension of Theorem 3.30 of [8]. For a proof, see Proposition 8.2
of [4].

Proposition 3.1. If every panel of a spherical building is contained in at least s+ 1 chambers,
then every set of s chambers admits an opposite chamber.

We now consider the projective space and its Grassmannians.

3.1. Projective spaces—Type An. The following lemma proves Theorem A for buildings of
type An.

Lemma 3.2. If no (n− k− 1)-space is disjoint from each member of a set T of q+ 1 projective
k-spaces of PG(n, q), then there exist a (k − 1)-space U and a (k + 1)-space W such that T
coincides with the set of k-spaces containing U and contained in W .

Proof. We first do the cases n ≤ 3 and then proceed by induction on n. If k = 0, then the
assertion follows directly from the main result of [1]. Dually, the case k = n−1 follows. Whence
the case n = 2. Now suppose n = 3 and k = 1. Suppose at least two members of T intersect
in a point, say, L1 ∩ L2 = {p}, L1, L2 ∈ T . Since we may suppose that T is not a planar line
pencil, there is some point x ∈ 〈L1, L2〉 not contained in any member of T . In the residue of x,
then lines obtained from T form a set of at most q members (since L1 and L2 define the same
line), and hence, by [1] again, we find a line K through x disjoint from all members of T . Now
suppose every pair of members of T is disjoint. Pick a point x not on any member of T (that
is possible since there are q3 + q2 + q + 1 points and only (q + 1)2 on members of T ). Pick
L1, L2 ∈ T arbitrarily. Then there exists a unique line K through x intersecting both L1 and
L2 non-trivially. Since K \ {x} contains q points, there exists a member L3 ∈ T not meeting
K. Hence in the residue of x, not all lines corresponding to the members of T go through a
common point. Hence there again exists a line through x not intersecting any member of T .
This shows the case n = 3.

We proceed by induction. By duality, we may assume 2k + 1 ≤ n. We consider two different
cases.

(1) Suppose each pair of members of T intersects in a (k− 1)-space. Then it is easy to see that
there are again two cases.

(i) The members of T contain a common (k − 1)-space U . Then we may assume they
are not all contained in a common (k + 1)-space. Intersecting the situation with a
hyperplane H not containing U , we obtain q+1 (k−1)-spaces in PG(n−1, q) all going
through the same (k − 2)-space, but not contained in a common k-space. Applying
induction we obtain an ((n−1)− (k−1)−1)-space Z ⊆ H disjoint from each member
of T .
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(ii) The members of T are contained in a common (k+1)-space W . Here, we may assume
that they do not contain a common (k − 1)-space. Since k + 1 ≤ n− 1, we can apply
induction and find a point p ∈ K not contained in any member of T . Let C be an
(n− 2− k)-space complementary to W . Then 〈p,W 〉 is an (n− 1− k)-space disjoint
from all members of T .

(2) Some pair {A1, A2} of members of T intersect in at most a (k− 2)-space. If either 2k+ 1 ≤
n−1, or not all pairs in T are disjoint, then we can find a point x outside the span 〈A1, A2〉
of two members A1, A2 ∈ T , with k+2 ≤ dim〈A1, A2〉 ≤ n−1, and not lying in any member
of T (use a simple count). It follows that we can apply induction in the residue of x and
obtain an (n− k − 1)-space through x disjoint from each member of T .

So we may assume that 2k+ 1 = n and all members of T are pairwise disjoint. Then the
proof is similar to the last arguments of the case (k, n) = (1, 3) above. �

3.2. Opposition in polar spaces. We now interrupt the proof to review some characteri-
sations of oppositeness in polar spaces. Since some of our proofs will be inductive, we must
recognise opposite singular subspaces from locally opposite subspaces. Recall that the residue
Res∆(U) of a singular subspace U in a polar space ∆ is the polar space with point set the set
of singular singular subspaces of ∆ of dimension 1 + dimU containing U , and lines are defined
by the singular subspaces of ∆ of dimension 2 + dimU containing U in the natural way,

Definition 3.3. Two singular subspaces U,W of a polar space are called locally opposite (at
U ∩W ) if no point of (U ∩W ) \ (U ∩W ) is collinear to all points of U ∪W . This is equivalent
to U and W being opposite in Res∆(U ∩W ).

We now have the following local-to-global characterisation.

Lemma 3.4. Let U,W be two singular subspaces of some polar space ∆. Let A ⊆ U be subspace.
Set B := A⊥ ∩W . Then the singular subspace S spanned by A and B is locally opposite U at
A, and locally opposite W at B if, and only if, U and W are opposite in Γ.

Proof. Suppose first that S is locally opposite U at A and locally opposite W at B. Then no
point of W \B is collinear to all points of U since no such point is collinear to all points of A.
No point of B ⊆ S is collinear to all points of U since S is locally opposite U at A. No point
of U \A is collinear to all points of B as such a point would otherwise be collinear to all points
of S (recalling that A and B generate S), contradicting the local opposition of S and U at A.
Finally, no point of A is collinear to all points of W since W is locally opposite S at B. Hence
U and W are opposite.

The converse is proved similarly. �

We also notice that generators are opposite if, and only if, they are disjoint. Also, if U and W
are singular subspaces of a polar space with the same dimension, then they are opposite if, and
only if, no point of U is collinear to all points of W (see Corollary 1.4.7 of [9]). We will use
these without reference.

3.3. Oriflamme geometries—Type Dn. The main purpose of this section is to prove The-
orem A for the extremal type n for buildings of type Dn. We argue in the corresponding
geometries, which are coined oriflamme geometries in [8]. They arise from hyperbolic polar
spaces or rank r by forgetting the singular subspaces of dimension r − 2 and splitting up the
maximal singular subspaces in the two natural types (with natural incidence, except that two
maximal singular spaces from different type are incident if they intersect in a subspace of di-
mension r − 2).

To achieve this, we should first prove Theorem A for points of the oriflamme geometries. We
provide a general proof for points of polar spaces of any type below (see Lemma 3.7). We
nevertheless prove this separately for oriflamme geometries since this proof does not use the
notion of geometric line and is simpler in nature. It holds for all polar spaces associated to
quadrics, but we will not need this.
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Lemma 3.5. If every line of a hyperbolic quadric Q of rank at least 3 contains exactly s + 1
points, then there exists a point non-collinear to each point of an arbitrary set T of s+1 (distinct)
points, except if these points are contained in a single line.

Proof. Let T = {p0, . . . , ps} be a set of s + 1 distinct points of Q, and suppose first that p0

is collinear with p1. Since not all points p0, p1, . . . , ps are contained in one line, we find a
point b ∈ p0p1 not contained in T . Suppose now that p0 and p1 are not collinear, then, since
{p0, p1}⊥⊥ = {p0, p1}, we find a point b ∈ {p0, p1}⊥ not collinear to p2.

In any case, the point b has the property that the number of lines joining b to a collinear point
in T is at most s. Applying Proposition 3.1 we find a line L through b such that no point of
T collinear to b is collinear to all points of T . Consequently every point pi of T is collinear to
a unique point p′i of L. Since p′0 = p′1 and |L| = s + 1, there is at least one point q ∈ L not
collinear to any member of T . �

Lemma 3.6. If every line of a hyperbolic quadric Q with Witt index d ≥ 3 contains exactly
s+1 points, then there exists a maximal singular subspace opposite each member of an arbitrary
set T of s + 1 (distinct) maximal singular subspaces of common type, except if these maximal
singular subspaces contain a common singular subspace of codimension 2 in each.

Proof. For d = 3, this is Lemma 3.2, Case PG(3, s). For d = 4, triality yields the result using
Lemma 3.5. So suppose d ≥ 5. We argue by induction on d and consider various possibilities.

(i) All members of T contain a common point p. In this case we apply induction in the
residue Res∆(p) at p and obtain a maximal singular subspace M through p intersecting
every member of T in just p. Let p′ be a point of ∆ opposite p and let M ′ be the unique
maximal singular subspace of ∆ containing p′ and adjacent to M , that is, intersecting M
in a subspace of dimension n− 2. Then clearly M ′ is disjoint from each member of T .

(ii) At least two members of T intersect, but they do not all share a common point. Set
T = {V0, V1, . . . , Vs}. Let p be a point of ∆ contained in at least two members of T , say
V0, V1, but not in all of them, say p /∈ V2. Let T ′ be the set of maximal singular subspaces
through p obtained by taking those of T containing p, and taking for each member Vi not
containing p an arbitrary maximal singular subspace V ′i containing p and intersecting Vi
in a subspace of codimension 2. If all members of T ′ intersected in a common subspace of
dimension d− 3, then by replacing V ′2 with another maximal singular subspace through p
intersecting V2 in subspace of dimension d−3 (distinct from V2∩V ′2), we obtain a new set
T ′ not having that property. Hence the induction hypothesis applied to Res∆(p) yields a
maximal singular subspace W through p intersecting each member of T ′ exactly in p, and
hence, since Ti and T ′i have a subspace of dimension d − 3 in common and W intersects
each member of T in a subspace of even dimension (which cannot contain a plane), W
intersects each member Vi of T in exactly one point pi. Since p0 = p1, the number of such
points is at most s and so we find a hyperplane H of W disjoint from all Vi ∈ T . The
unique maximal singular subspace U distinct from W and containing H has the opposite
type of the Vi and hence is disjoint from all of them (since it cannot intersect any of them
in at least a line as this would imply that H intersects a member of T nontrivially).

(iii) Each pair of members of T is opposite. A simple count yields a point b not contained in
any member of T . Let T ′ be the set of maximal singular subspaces through b intersecting
a given member of T in a hyperplane. Suppose two members V ′0 , V

′
1 of T ′ intersect in a

subspace U of dimension d − 3. Then the corresponding members V0, V1, respectively, of
T intersect U in a subspace of dimension d − 4, and those have mutually a subspace in
common of dimension at least d − 5 ≥ 0, a contradiction to the disjointness of V0 and
V1. Hence induction yields a maximal singular subspace M through b intersecting each
member of T ′ in just {b}. Since all points collinear to b of the union of the members of
T are contained in the members of T ′, and all points of M are collinear to b, we conclude
that M is disjoint from each member of T . �
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3.4. Polar spaces—Types Bn, Cn and Dn. We first prove Theorem A for type 1 vertices,
that is, points of the corresponding polar space. Wd distinguish between rank at least 3 and
rank 2.

Lemma 3.7. If every line of a polar space ∆ of rank at least 3 contains exactly s + 1 points,
then there exists a point non-collinear to each point of an arbitrary set T of s + 1 (distinct)
points, except if these points are contained in a single line, or if they form a hyperbolic line in
case ∆ is a symplectic polar space.

Proof. Suppose no point of ∆ is non-collinear to each point of T , that is, each point of ∆ is
collinear to some member of T . We prove that T is a geometric line in the sense of [7] and then
the result follows from Lemmas 4.7 and 4.8 of [7].

So we have to prove that every point of ∆ is collinear to exactly one or all points of T . Since we
assume that each point is collinear to at least one point of T , it suffices to show that, if some
point is collinear to at least two points of T , then it is collinear to all points of T . Suppose for
a contradiction that some point p is collinear to at least two points x, y of T , and opposite the
point z ∈ T . We claim that we may assume that p /∈ T . Indeed, suppose it is. Then we may as
well assume p = y. Let L be the line through x and y. Then there are at most s points of T
contained in L, hence there is a point q ∈ L \ T . The number of lines through q containing a
line that also contains a point of T is at most s, hence Exercise 2.11(iii) of [9] in Res∆(q) yields
a line K 3 q not collinear to any point of T . Since x and y project to the same point on K,
there is some point on K opposite each point of T , a contradiction. The claim is proved. But
now exactly the same argument replacing q with p (and using the fact that z is not collinear
to p to obtain the assertion that there are at most s lines through p containing a point of T )
again leads to a contradiction. Hence the lemma is proved. �

Now for rank 2 polar spaces.

Lemma 3.8. If every line of a polar space ∆ of rank 2 contains exactly s+ 1 points, and every
point is contained in exactly t + 1 lines, then there exists a point non-collinear to each point
of an arbitrary set T of s + 1 (distinct) points, except if these points are contained in a single
line, or if they form a long hyperbolic line, that is, T = T⊥⊥ = {y, z}⊥ for every pair of distinct
points y, z of T⊥ and s = t.

Proof. Let ∆ have order (s, t).

Suppose that no point is opposite all points of T . Suppose first that T contains (at least) two
collinear points, say x1, x2. Let the line L through x1 and x2 contain ` points of T . If ` = s+ 1,
then we are done, so assume 2 ≤ ` ≤ s. Let p be a point on L \ T . If there was some line K
through p containing no point of T , then, since x1 and x2 project onto the same point p of K,
there exists a point on K opposite each member of T , a contradiction. Hence

`+ t(s+ 1− `) ≤ |T | = s+ 1,

implying t ≤ 1, a contradiction.

Now suppose every pair of points in T is opposite. Pick x1, x2 ∈ T arbitrarily. Let z ∈ {x1, x2}⊥
be arbitrary and note z /∈ T . Then, as in the previous paragraph, every line through z contains
at least (and hence exactly, by our assumption that no pair of points of T is collinear) one point
of T . Hence s = t and T ⊆ z⊥. By the arbitrariness of z we obtain T ⊆ {x1, x2}⊥⊥. Hence
|{x1, x2}⊥⊥| = s+ 1 = t+ 1 and the arbitrariness of x1, x2 implies T = T⊥⊥. �

Note that the only Moufang quadrangles with long hyperbolic lines are the symplectic quad-
rangles, as follows from Theorem 1.4 of [3].

Remark 3.9. The inequality t ≤ 1 obtained in the previous proof cannot be sharpened since
in case t = 1, every set of points intersecting each “horizontal line”’ of a given (s+ 1)× (s+ 1)
grid in exactly one point, does not admit an opposite in the grid and is not necessarily of the
type described in the lemma.
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Now we handle the case of maximal singular subspaces. In that case, the parabolic quadrics
(these conform to the split buildings of type Bn) play an exceptional role in Theorem A. Hence
we treat them first.

Lemma 3.10. If in a parabolic quadric Q of Witt index n, n ≥ 2, every line contains precisely
s+ 1 points, then every set T of s+ 1 maximal singular subspaces admits an opposite maximal
singular subspace, except if they form a line or hyperbolic line in the corresponding dual polar
space Γ(Q).

Proof. Embed Q naturally in a hyperbolic quadric Q′ of Witt index n+ 1. Each member M of
T is contained in a unique maximal singular subspace M ′ of Q′ of given type. The set of all
such subspaces M ′ admits an opposite maximal singular subspace W ′ if they do not form a line
in the corresponding half spin geometry, that is, by [7], if T is not a line or a hyperbolic line in
Γ(Q). Then W = W ′ ∩ Q is a maximal singular subspace of Q disjoint from every member of
T . �

Now we can treat the other cases. It is convenient to first collect the rank 2 case from what we
already showed above.

Lemma 3.11. If every line of a polar space ∆ of rank 2 contains exactly s+1 points, and every
point is contained in exactly t + 1 lines, then there exists a line disjoint from each member of
an arbitrary set T of t + 1 (distinct) lines, except if these lines contain a common point, or if
they form one regulus of a full subgrid and s = t.

Proof. This is just the dual of Lemma 3.8. �

We can now show the general case.

Lemma 3.12. Let ∆ be a finite polar space of order (s, t), with both s and t at least 2. Suppose
∆ does not correspond to a parabolic quadric. Then every set T of t+ 1 maximal singular sub-
spaces admits an opposite maximal singular subspace, except if they contain a common singular
subspace of codimension 1 (that is, except if they form a line in the corresponding dual polar
space Γ(Q)).

Proof. We prove this by induction on the rank n of ∆, where Lemma 3.11 serves as our base,
noting that a parabolic quadric is characterised by s = t and admitting a full embedded grid.
The proof has the same structure as the one of Lemma 3.6, except that only some dimensions
are different.

So, let n ≥ 3. We again distinguish some cases.

(i) The members of T contain a common point p. This is the same as the corresponding case
in the proof of Lemma 3.6.

(ii) At least two members of T intersect, but they do not all share a common point. Set
T = {V0, V1, . . . , Vt}. Let p be a point of ∆ contained in a maximum number r of members
of T and note that our assumptions imply that 2 ≤ r ≤ t. We may therefore assume
p ∈ V0∩V1. Let T ′ be the set of maximal singular subspaces through p obtained by taking
those of T containing p, and taking the unique ones through p intersecting a member of
T , that does not contain p, in a hyperplane. Then |T ′| = t + 1. Suppose all members of
T ′ contain a common singular subspace U of dimension n − 2. Let Vi ∈ T \ T ′. Then
Vi intersects U in a subspace of dimension n − 3, which is in particular not empty, since
n ≥ 3. Let q ∈ Vi ∩ U . Then q is contained in each member of T ′ ∩ T , and in Vi ∈ T \ T ′,
contradicting the maximality of r. Hence we can apply induction in Res∆(p) and obtain
a maximal singular subspace M through p intersecting each member of T in at most the
point p. Let H be a hyperplane of M not containing p. For each member Vi ∈ T , there is
a unique maximal singular subspace V ′i ⊇ H intersecting V in a point. Since V ′0 = V ′1 , at
most t distinct maximal singular subspaces through H are not disjoint from some member
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of T , hence there is at least one maximal singular subspace through H disjoint from all
members of T .

(iii) Every pair of members of T is disjoint. Here the fact that s and t are not necessarily
equal, and that the Witt index can still be 3, complicates the corresponding argument in
the proof of Lemma 3.6. So we provide a detailed modified reasoning. Let p be a point not
contained in any member of T (that p exists follows again from an easy count: the number
of points of ∆ is strictly more than q+1 times the number of points of a maximal singular
subspace). Let T ′ be as above: it is the set of maximal singular subspaces through p
intersecting a member of T in a hyperplane. Suppose the members of T ′ share a subspace
U of dimension n − 2. Then two arbitrary members of T intersect U in subspaces of
dimension n− 3, which have to intersect nontrivially if n ≥ 4, contradicting the assumed
disjointness of members of T . Hence n = 3.

Let π0, π1, π2 ∈ T be arbitrary (but distinct) and select p0 ∈ π0 arbitrarily. Let T ′ be
the collection of planes through p0 intersecting a member of T \ {π0} in a line, completed
with π0. Then π0 is locally opposite each other member of T ′ at p0. Induction yields a
plane α through p0 disjoint from each member of T \ {π0} and intersecting π0 in just p0.
Select a plane β through p0 intersecting π0 in a line L0 and α in a line L. Pick two points
b1 and b2 on L \ {p0}. Let, for i = 1, 2, the set Ti be defined as the set of planes through
bi intersecting some member of T in a line. Then β ∈ Ti. If, for some i ∈ {1, 2}, no line
in β through bi intersects each member of T , then the members of Ti do not contain a
common line, we can apply the induction hypothesis on Ti and obtain a plane opposite
each member of T . Hence we may assume that, for i = 1, 2, some line Li through bi in β
intersects each member of T . Since π1 and π2 are disjoint, at least one of them does not
contain the intersection point L1 ∩ L2; say π1 does not. But then π1 has two points in
common with L1 ∪ L2 ⊇ β, hence intersects β in a line, which evidently intersects π0 in
some point, contradicting the disjointness of π0 and π1. �

We use the previous result for maximal singular subspaces to prove the general result for singular
subspaces of arbitrary dimension, delaying the proof for symplectic polar spaces to later.

Lemma 3.13. Let ∆ be finite thick polar space of rank n ≥ 3, order (s, t), and suppose ∆ is
not symplectic. Let T = {α0, . . . , αs} be a set of s + 1 different singular subspaces of common
dimension ` ≤ n− 2 in ∆ such that they do not form a pencil in a singular space of dimension
` + 1 (and we also assume ` ≥ 1). Then there exists a singular subspace opposite to all of
α0, . . . , αs in ∆.

Proof. Let, for given order (s, t) and rank n, the polar space ∆ and α0, . . . , αs be a smallest
(with respect to n− `) counterexample to the lemma.

Select arbitrarily singular subspaces βi of dimension `+1 (these exists since ` ≤ n−2) containing
αi, for all i. We can easily choose them in such a way that they do not have a subspace of
dimension `−1 in common, and, if ∆ is parabolic and ` = n−2, that they do form a hyperbolic
line in the dual polar space. Then it follows, either since we are dealing with the smallest
counterexample (if ` ≤ n − 3), or because of Lemma 3.10 and Lemma 3.12 (if ` = n − 2) that
we can find a singular subspace β of dimension ` + 1 opposite each of βi, i ∈ {0, 1, . . . , s}. It
follows that there is a unique point pi in β collinear to all points of αi. If {p0, p1, . . . , ps} is not
a line, then by Lemma 3.2 we find a subspace α ⊆ β of dimension ` not containing any of the
points p0, p1, . . . , ps. Then α is opposite each member of T and we are done.

So we may assume that {p0, p1, . . . , ps} is a line L. The set of points of βi collinear to all points
of L is a subhyperplane Hi contained in αi (as a hyperplane of the latter). We now claim that
all points of αi \Hi are collinear to all points of αj \Hj , for distinct i, j ∈ {0, 1, . . . , s}. Indeed,

we may assume (i, j) = (0, 1). Let x0 ∈ α0 \ H0 and x1 ∈ α1 \ H1. Then x⊥0 ∩ β =: K0 and
x⊥1 ∩ β =: K1 are two hyperplanes of β none of which containing L, but containing p0 and p1,
respectively. It follows that N := K0 ∩K1 is a subspace of dimension ` − 1 ≥ 0 disjoint from
L. The line N⊥ ∩ βi intersects αi in a unique point xi as otherwise N belongs to the perp
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of a point of Hi, contradicting the facts that also L belongs to the perp, that L and N are
complementary, and β and βi are opposite (and note that the notation xi is in conformity with
the definitions of x0 and x1 above), We may hence view x0, x1, . . . .xs as points of Res∆(N).
If they do not constitute a line in Res∆(N), then by Lemma 3.7 we can find a point opposite
all of them, meaning using Lemma 3.4, we can find a subspace α of dimension ` containing N
opposite each of αi, i ∈ {0, 1, . . . , s}. Hence all of x0, x1, . . . , xs are collinear and the claim is
proved.

The previous claim now easily implies that all members of T are contained in a common singular
subspace, say M , which we may assume to be maximal. Since by assumption, they do not form
a Grassmann line in U , Lemma 3.2 yields a subspace U ⊆M of dimension n−2−` disjoint from
all αi. Let M ′ be a maximal singular subspace of ∆ opposite M . Then U⊥ ∩M has dimension
` and is opposite each member of T .

This concludes the proof of the lemma. �

There remains to deal with symplectic polar spaces. It turns out that type 2 elements, that is,
lines, cannot be included in the general proof, so we treat them separately. However, the final
proof is inductive and the result for lines in rank 3 is needed to do the general case, which is
then used to do the lines for higher rank. This explains the rather peculiar conditions in the
next lemma, which shall become clear in the proof of Proposition 3.16 below.

Lemma 3.14. Let ∆ be a symplectic polar space of rank at least 3 and order (s, s). Assume
that every set of s + 1 singular planes, not contained in a 3-space of the underlying projective
space if they contain a common line, admits a common opposite plane. Then a set T of s + 1
lines of ∆ admits a common opposite in ∆ if, and only if, T is not a line pencil in some plane
of the underlying projective space.

Proof. Let T be a set of s+1 lines of the symplectic polar space ∆ of rank r naturally embedded
in PG(2r− 1, s), r ≥ 3. Suppose T is not a line pencil in some plane of PG(2r− 1, s). We show
that there exists a line of ∆ opposite all members of T . As usual, we set T = {L0, L1, . . . , Ls}.
We include Li in a plane αi in such a way that the αi do not contain a common line (which can
be easily accomplished). Let β be a plane opposite all αi, i ∈ {0, 1, . . . , s}. Set mi := L⊥i ∩ β.
If {mi|i ∈ {0, 1, . . . , s}} is not a line, then we can find a line L in β not containing any of the
mi and hence opposite all of the Li. So the mi constitute a line M . Let b ∈ β \M be arbitrary.
Then bi := b⊥ ∩ Li is a unique point. Suppose the lines bbi do not form a line pencil in a plane
of PG(2r − 1, s). Then we can find a line L through b locally opposite all of the bbi. Then L is
opposite all of the Li by Lemma 3.4. Hence we may assume that the lines bbi form a line pencil
in a plane πb of PG(2r − 1, s). Suppose now that for two choices of b ∈ β \M , the points bi
are contained in a common line Kb of PG(2r− 1, s). Let b, c be those two points and adapt the
same notation for c as we introduced for b. Without loss of generality, we may assume that the
line bc contains the point m0. Then the lines Li, i ∈ {1, 2, . . . , s} are contained in the plane γ
of PG(2r − 1, s) spanned by Kb and Kc. The point b0 = c0 is also contained in γ.

Suppose first that also L0 is contained in γ. Then, since we assumed that T is not a line pencil,
it is easy to see that γ is a singular plane, and it contains a point x not on any of the Li. Then
the line x⊥ ∩ γ′, with γ′ a plane opposite γ in ∆ is opposite each member of T .

Suppose now that L0 is not contained in γ. Let z := L1 ∩ L2. Then z ⊥ b0 as z ⊥ {b1, b2} ⊆
Kb 3 b0. We can select a singular plane βz containing zb0 and such that L0 is not collinear to
βz, and βz is not in a common singular 3-space with γ if singular.

In βz \ zb0 we can find a point y not collinear to b1. It follows that y is not collinear to any of
the bi, i ∈ {1, 2 . . . , s}. The lines joining y with the unique projection point of y on the Li do
not form a line pencil in any plane as two of these lines coincide (namely, the line yz joins y
with the point z of both L1 and L2). Hence we can find a line L through y locally opposite all
these lines. Again, by Lemma 3.4, L is opposite each member of T .
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Hence we may assume that for at most one point b ∈ β \M , the points b0, b1, . . . , bs are on one
line (and we denote that point, if it exists, from now on with b∗). Note that we may also assume
that L0 and L1 do not intersect. Indeed, if all members of T pairwise intersect, then either they
are contained in a plane, and we treated that case above, or they all contain a common point
p. In the latter case the result follows from considering the residue at p (indeed, we can then
select a line K locally opposite each member of T ; then select a point q ∈ K \ {p} and a line L
locally opposite K at q. The line L is opposite each member of T by Lemma 3.4).

First let s > 2. Choose points b, c ∈ β \M with m2 ∈ bc and b∗ /∈ {b, c}. As before, the lines L0

and L1 are contained in 〈πb, πc〉, which is a 4-space U2 of PG(2r− 1, s). If we choose d ∈ β \M
with m3 ∈ bd and d 6= b∗, then we obtain likewise that L0 and L1 are contained in a 4-space U3

of PG(2r−1, s) spanned by πb and πd. Suppose first these two 4-spaces coincide. Then U2 = U3

contains β. The polar space induced in U2 is degenerate, but, as we have opposite lines (L0

and some line in β), the radical is a point, which must coincide with the intersection of any
pair of singular planes, contradicting m0 6= m1. Hence U2 6= U3 and these intersect in a 3-space
containing L0, L1 and b. However, L0 and L1 already span U2 ∩U3, and by the arbitrariness of
b, the 3-space 〈L0, L1〉 contains β, which is ridiculous as β is disjoint from L0 ∪ L1.

Now let s = 2. Similar arguments as in the previous paragraph show that W := 〈L0, L1, L2〉
contains β. Then again dimW = 3 leads to the contradiction that L0 ∩ β is nonempty and
if dimW = 4, then we have a degenerate symplectic polar space induced in W , leading to
the same contradiction as before. Hence dimW = 5. Also as before, W is a non-degenerate
symplectic polar space. We coordinatise W as follows (using obvious shorthand notation). The
two points on L0 not collinear to all points of M are labelled 100000 and 010000. Likewise
those on L1 and L2 by 001000, 000100 and 000010, 000001, respectively. We may assume that
the points 100000, 001000 and 000010 are together in a plane πb, b ∈ β, and then b has labels
101010. Similarly we have the points 100101, 011001 and 010110 in β \M . It follows that
m0 = 001111, m1 = 110011 and m2 = 111100. Then the point 111111 is contained in each of
the planes 〈mi, Li〉, i = 0, 1, 2, and hence collinear in ∆ with all points of L0 ∪ L1 ∪ L2, which
spans W , contradicting non-degeneracy.

The proof is complete. �

Lemma 3.15. Let ∆ be a symplectic polar space of rank r ≥ 4 and order (s, s), and let i ∈ N
be such that 2 ≤ i ≤ r−2. Assume that every set of s+ 1 singular subspaces of dimension i+ 1,
not contained in a common (i + 2)-dimensional subspace of the underlying projective space if
they contain a common i-dimensional singular subspace, admits a common opposite. Suppose
also that Theorem A is true for symplectic polar spaces of rank at most r − 1. Then a set T
of s+ 1 i-dimensional singular subspaces of ∆ admits a common opposite in ∆ if, and only if,
all members T are not contained in a common (i + 1)-dimensional subspace of the underlying
projective space if they contain a common (i− 1)-dimensional singular subspace of ∆.

Proof. Let T be a set of s+1 singular subspaces of dimension i of the symplectic polar space ∆ of
rank r naturally embedded in PG(2r−1, s), r ≥ 4. Suppose all members of T are not contained
in an (i+ 1)-dimensional subspace of PG(2r − 1, s) if they share a common (i− 1)-dimensional
singular subspace of ∆. We show that there exists a singular i-dimensional subspace of ∆
opposite all members of T . We set T = {U0, U1, . . . , Us}.
First we assume that all members of T are contained in a common (i+ 1)-dimensional subspace
W of PG(2r−1, s). By our assumption, not all members of T share the same (i−1)-dimensional
subspace. This implies that the radical of the polar space induced in W has dimension strictly
larger than i− 1; hence W is a singular subspace. Our assumption and Lemma 3.2 imply that
we can find a point x ∈ W not contained in any member of T . Let W ′ be a singular subspace
of dimension i + 1 opposite W . Then x⊥ ∩W ′ is a singular subspace of dimension i opposite
each member of T .

Henceforth we may assume that not all members of T are contained in the same subspace of
PG(2r − 1, s) of dimension i+ 1.
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Include every member of T in a singular subspace of dimension i+1 in such a way that not all of
them are contained in a common subspace of dimension i+2 of PG(2r−1, s). By assumption we
can find a subspace W opposite all of these (i+ 1)-dimensional subspaces. Set {mi} = W ∩U⊥i .
If the mi do not form a line, then Lemma 3.2 yields a singular i-space U ⊆ W not containing
any of the mi and hence opposite all members of T . Hence we may assume that the mi form a
line M . Set Hi = Ui ∩M⊥. Then Hi is a hyperplane of Ui.

Assume now that two members of T , say U0 and U1, do not share a common (i−1)-dimensional
singular subspace. Set D = U0 ∩U1. Let H be a hyperplane of U0 not containing D, and hence
distinct from H0. Then K := H⊥ ∩W is a line through m0. Pick x ∈ K \ {m0} arbitrarily.
Define Ux

i := 〈x, x⊥∩Ui〉. Suppose there exists an i-dimensional singular subspace U through x
locally opposite all Ux

i . Then, by Lemma 3.4, U is opposite each member of T . Our hypotheses
imply that the Ux

i are contained in an (i+ 1)-dimensional subspace Ax of PG(2r− 1, s) and all
Ux
i share a common (i−1)-space Bx. The singular subspace Bx contains a hyperplane of H and

a hyperplane of x⊥∩U1. As D is not contained in H, these two hyperplanes do not coincide, and
hence they generate Bx. Now we do the same construction with y ∈ K \ {x,m−)} and obtain
the similarly defined subspaces Ay and By. It is elementary to check that x⊥ ∩ Ui 6= y⊥ ∩ Ui,
for i ∈ {1, 2, . . . , s}. Hence A := 〈Ax, Ay〉 contains Ui for all i ∈ {1, 2, . . . , s}. The intersection
Ax ∩ Ay contains H. Also, since H does not contain D, it does not contain the intersection

x⊥∩y⊥∩U1 (which is a singular subspace of dimension (i−2)). It follows that Ax and Ay share at

least a subspace of dimension i (generated by H and x⊥∩y⊥∩U1). Hence dimA ∈ {n+1, n+2}.
Suppose dimA = n+ 1. Then Ax = Ay and contains the line 〈x, y〉, which necessarily intersects
U1 for dimension reasons. But this contradicts the fact that W is opposite some singular (i+1)-
space containing U1. Consequently dimA = n+ 2. We can now do the same thing with another
hyperplane H ′ of U0 not containing D and distinct from H0, and obtain the similarly defined
subspace A′ of dimension n+ 2 and the line 〈x′, y′〉 of W , with m0 ∈ 〈x′, y′〉. Since both A and
A′ share the subspace 〈H,U1〉 of dimension at least i+1, we have dim〈A,A′〉 ∈ 〈n+2, n+3〉. If
A = A′, then A contains the plane 〈x, x′,m0〉, which necessarily intersects U1 in at least a point
since dimA = n+ 2 and dimU1 = i. This is again a contradiction. It follows that A0 := A∩A′
has dimension i + 1 and contains all of U1, U2, . . . , Us, plus H and m0. If A0 were singular,
then m0 = m1, a contradiction. Hence A0 is not singular and all Ui, i ∈ {1, 2, . . . , s}, share a
common (i − 1)-space V0. There is a unique i-space U∗0 through V0 in A0 distinct from Ui for
any i ∈ {1, 2, . . . , s}. The space U∗0 contains H and m0.

Now we can find a singular (i + 1)-space W ∗ containing U∗0 with the property that not all of
its points are collinear to all points of U0. In W ∗, we can then find a point z not collinear to
all points of U1 (because U⊥1 cuts out a hyperplanes of W ∗). Since a point of ∆ is collinear
to either all points, or a hyperplane of points of W ∗, we see that z⊥ intersects each Ui in a
hyperplane of Ui, and for i = 1, 2, . . . , s, that hyperplane is necessarily V0. Hence there exists
an i-space U through z locally opposite the two spaces 〈z,H〉 and 〈z, V0〉 at z, and U is opposite
each member of T by Lemma 3.4.

Hence we may assume that each pair in T intersects in an (i − 1)-space. Then either that
(i−1)-space is unique, say V ∗, or all members of T are contained in some (i+1)-space, say W ∗.
In the former case, our hypotheses permit to find an i-space U through V ∗ locally opposite each
member of T , and then the projection U ′ of U onto a singular subspace opposite V ∗ is opposite
each member of T at V ∗. In the latter case we are back to the situation of the first paragraph
of this proof, which we already handled.

This completes the proof of the lemma. �

We can now prove Theorem A for symplectic polar spaces.

Proposition 3.16. Let Γ be a symplectic polar space of rank r at least 2 and order (s, s).
Let T be a set of s + 1 singular subspaces of Γ of dimension k ≤ r − 2. Then there exists
a singular subspace of dimension k opposite each member of T , except if either T is a line

12



of the corresponding k-Grassmannian geometry, or all members of T contain a given (k − 1)-
dimensional subspace in the residue of which they form a hyperbolic line.

Proof. We prove this by induction on r, and for given r we use induction on r − i.
Let first r = 3. Then i = 1 and the assertion holds by Lemma 3.14, Lemma 3.12 and Lemma 3.10
(we need the latter in characteristic 2).

Now assume r ≥ 4. Then the assertion holds for i ≥ 2 by Lemma 3.15, and it holds for i = 1
by Lemma 3.14.

The proof is complete. �
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