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Abstract. In this article we describe the general and special projectivity groups for all irre-
ducible residues of all thick, irreducible, spherical buildings of type Bn, Cn and F4, and rank
at least 3. This determines the exact structure and action of Levi subgroups of parabolic
subgroups of groups of Lie type related to those buildings.

1. Introduction4

In [5], all general and special projectivity groups for all irreducible residues of all thick, irre-5

ducible, spherical buildings of simply-laced type and rank at least 3 are determined. Previously,6

Norbert Knarr and the second author determined these groups for many spherical buildings of7

rank 2 in [14] and [24, Chapter 8], respectively. In this article, we determine the general and8

special projectivity groups for all irreducible residues of all thick irreducible buildings of type9

Bn, Cn and F4 and rank at least 3. As described in [5], this will determine the exact struc-10

ture and action of Levi subgroups of parabolic subgroups of simple groups of Lie type on the11

corresponding residues.12

Buildings of type Bn and Cn correspond to polar spaces, and there is a large variety of such13

structures. The precise special and general projectivity groups sometimes heavily depend on14

the field and the associated pseudo-quadratic form (see below), but we provide as much general15

information as possible, in particular, we provide information about generating sets that should16

suffice to determine the exact groups for any given situation.17

Referring for the notation and terminology to further sections, we summarise our results for18

type Bn as follows.19

Theorem A. Let ∆ be a polar space of rank r ≥ 3, and let U be a singular subspace of ∆.20

Then the following hold.21

(i) If U is a projective space of dimension d ≤ r − 2, then Π+
≤(U) is the full linear type-22

preserving group of U and Π≤(U) is the full linear group including (linear) dualities.23

(ii) If U is a maximal singular subspace, that is, a projective space of dimension r − 1, then,24

if ∆ is embeddable, Π+(U) is the linear group generated by homologies with factors in a25

certain norm set (see Section 7.2.2), whereas Π(U) extends Π+(U) with a duality having26

companion field automorphism the involution of the pseudo-quadratic form defining ∆. If27

∆ is non-embeddable, then Π+(U) is the full projective group of the corresponding Cayley28

plane and Π(U) extends this group with a standard polarity.29

(iii) If U has dimension at most r− 3, then Π+
≥(U) is generated by products of two reflections,30

that is, collineations that pointwise fix a geometric hyperplane. In the cases that Π+
≥(R) ̸=31

Π≥(R), we have that Res∆(U) arises from a non-degenerate quadratic form with non-32

degenerate associated polarity and such that r minus the rank of Res∆(U) is an odd integer.33

In that case, Π≥(U) is generated by all reflections. If ∆ is non-embeddable, then U is34
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a point and Π+(U) = Π(U) is the full group of direct similitudes of the corresponding35

quadratic form.36

(iv) If U has dimension r − 2, then, if Res∆(U) can be identified with an embeddable polar37

space of rank 1 in the natural way, the same conclusion holds as in the previous case. If38

∆ is non-embeddable, then Π+
≥(U) = Π≥(U) is the full linear group of the corresponding39

projective line.40

Buildings of type F4 come in exactly five well specified flavours, and hence, it is possible to41

write down the exact special and general projectivity groups for all irreducible residues in each42

of these cases. We refer to Table 1 at the end of the paper for a complete enumeration.43

In [5], the authors showed that, in the simply laced case, there is a general diagrammatic rule44

to predict when the special and general projectivity groups coincide generically (meaning, over45

all fields). The present paper shows that this rule does not hold anymore when the diagram46

is not simply laced. In particular, for buildings of type F4, the rule would imply that only for47

the residues of type {2, 3, 4}, {2.3} and all rank 1 residues, the special and general projectivity48

groups generically coincide. In the split case, however, also residues of type {1, 2, 3} show49

this behaviour, whereas we have rank 1 residues for which the special and general projectivity50

groups do not coincide (but the latter was to be expected as this phenomenon also exists in the51

non-simply laced rank 2 case, see [14] and [24, Chapter 8] that we mentioned before).52

As a direct application of our results, we come to know the exact action of the (irreducible) Levi53

subgroups of the little projective group of a spherical building on the corresponding residues.54

(The little projective group of a spherical building is the group generated by all root elations and55

is usually simple.) Indeed, for that, it suffices to generalise [5, Proposition 3.2], which proves a56

connection between the little projective groups of Moufang spherical buildings of simply-laced57

type and the special projectivity groups of those buildings, to the non-simply laced case. In fact58

the proof given in [5] is valid for all Chevalley groups. However, the little projective group of59

a building of type Bn, Cn or F4 is not always a Chevalley group (not even an algebraic group).60

We use a result proved in [16] to prove the same in the general case, see Theorem 3.1 below.61

This generalises the results of [5].62

In [5, Section 8.1], a purely algebraic method, using the root lattice and the weight lattice of63

a Chevalley group, is given to determine the action of the (irreducible) Levi subgroups of the64

little projective group of the associated spherical building on the corresponding residues, and65

it is applied to the simply laced case. We think that this application could be extended to the66

non-simply laced case when the corresponding building is associated to an adjoint Chevalley67

group. Perhaps this can also be done, if the building is associated to an algebraic group (but68

we did not try to do so); in the remaining cases (when the building is associated to a classical69

group over a skew field, possibly infinite-dimensional over its centre, or to a group of mixed type70

F4), it is not obvious to us, how to extend that method. In any case, one of the requirements71

of the method explained in [5, Section 8.1] is a certain computation in rank 2 residues. Such72

a computation would be similar to the one performed in Section 7.2.2, for instance. Although73

certain shortcuts may arise to determine the special projectivity groups in some situations, if74

we extended the method of [5, Section 8.1] to the non-simply laced case, like in the split cases,75

we decided to treat all cases uniformly using geometric arguments. We refer the reader to [5]76

for more details on the algebraic approach.77

The paper is structured as follows. In Section 2, we introduce terminology and notation, in78

particular, we define the geometries (polar spaces and metasymplectic spaces) that correspond79

to spherical buildings of types Bn, Cn and F4 and review some basic properties. In Section 380

we recall some old general observations for spherical buildings that we will use in subsequent81

sections and make a new one. These observations are independent of the type. Then, in82

Section 4, we specialise to non-simply laced types and translate some reduction theorems, proved83

in [5], to these types. These reduction theorems come with some conditions, and we check in84

Section 5 that the conditions are satisfied in the cases we will need. In Section 6 we determine85
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the projectivity groups for the upper residues in polar spaces, and in Section 7 we do the same86

for the lower residues. In Section 8 we determine the projectivity groups of the residues of87

points in a metasymplectic space (which are the residues of vertices of type 1 and type 4 in88

buildings of type F4), and we handle the other residues of metasymplectic spaces in Section 9.89

In Section 10 we put our results for metasymplectic spaces in a table.90

2. Preliminaries91

2.1. Point-line geometries and partial linear spaces. Throughout, we will work with92

incidence structures called polar spaces and metasymplectic spaces, which are instances of93

partial linear spaces. In this subsection, we introduce the general definitions we will need. Note94

that thick polar spaces correspond to buildings of type Bn and Cn, and (thick) metasymplectic95

spaces will correspond to buildings of type F4.96

Definition 2.1. A point-line geometry is a pair ∆ = (P,L ) with P a set and L a set of97

subsets of P. The elements of P are called points, the members of L are called lines. If p ∈ P98

and L ∈ L with p ∈ L, we say that the point p lies on the line L, and the line L contains99

the point p, or goes through p. If two points p and q are contained in a common line, they are100

called collinear, denoted p ⊥ q. If they are not contained in a common line, we say that they101

are non-collinear. For any point p and any subset P ⊂ P, we denote102

p⊥ := {q ∈ P | q ⊥ p} and P⊥ :=
⋂
p∈P

p⊥.

A(thick) partial linear space is a point-line geometry in which every line contains at least three103

points, and where there is a unique line through every pair of distinct collinear points p and q,104

which is then denoted with pq. We will usually omit the adjective “thick”.105

Example 2.2. Let V be a vector space of dimension at least 3. Let P be the set of 1-spaces106

of V , and let L be the set of 2-spaces of V , each of them regarded as the set of 1-spaces it107

contains. Then (P,L ) is called a projective space (of dimension dimV − 1), and denoted as108

PG(V ).109

Definition 2.3. Let ∆ = (P,L ) be a partial linear space.110

(1) A path of length n in ∆ from point x to point y is a sequence (x = p0, p1, . . . , pn−1, pn = y)111

of points of ∆ such that pi−1 ⊥ pi for all i ∈ {1, . . . , n− 1}. It is called a geodesic when112

there exist no paths of ∆ from x to y of length strictly smaller than n, in which case113

the distance between x and y in ∆ is defined to be n, notation d∆(x, y) = n.114

(2) The partial linear space ∆ is called connected when for any two points x and y, there115

is a path (of finite length) from x to y. If moreover the set {d∆(x, y) | x, y ∈ P} has a116

supremum in N, this supremum is called the diameter of ∆.117

(3) A subset S of P is called a subspace of ∆ when every line L ∈ L that contains at least118

two points of S, is contained in S. A subspace that intersects every line in at least a119

point, is called a hyperplane. A hyperplane is called proper if it does not consist of the120

whole point set. A subspace is called convex if it contains all points on every geodesic121

that connects any pair of points in S. We usually regard subspaces of ∆ in the obvious122

way as subgeometries of ∆.123

(4) A subspace S in which all points are collinear, or equivalently, for which S ⊆ S⊥, is124

called a singular subspace. If S is moreover not contained in any other singular subspace,125

it is called a maximal singular subspace. A singular subspace is called projective if, as126

a subgeometry, it is a projective space (cf. Example 2.2). Note that every singular127

subspace is convex.128

(5) For a subset P of P, the subspace generated by P is denoted ⟨P ⟩∆ and is defined to be129

the intersection of all subspaces containing P . A subspace generated by three mutually130

collinear points, not on a common line, is called a plane. Note that, in general, this is not131

necessarily a singular subspace; however we will only deal with polar and metasymplectic132
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spaces, which implies that subspaces generated by pairwise collinear points are singular;133

in particular planes will be singular subspaces isomorphic to projective planes, that is,134

projective subspaces of dimension 2.135

2.2. Polar spaces. We recall the definition of a polar space, and gather some basic properties.136

We take the viewpoint of Buekenhout–Shult [4]. All results in this section are well known.137

Definition 2.4. A polar space is a point-line geometry in which every line contains at least138

three points and for every point x the set x⊥ is a proper geometric hyperplane. We will only139

consider polar spaces of finite frank, that is, such that maximal singular subspaces are generated140

by a finite number of points. The minimal such number is called the rank of the polar space. A141

submaximal singular subspace is a hyperplane of a maximal singular subspace.142

One can show that all singular subspaces are either empty, points, lines or projective spaces of fi-143

nite dimension (see [21, Theorem 7.3.6 and Lemma 7.3.8] or [25, Theorem 1.3.7]). Consequently,144

a polar space is a partial linear space. A polar space is called top-thin if every submaximal sin-145

gular subspace is contained in exactly two maximal singular subspaces. It is well known that146

a polar space is either top-thin, or each submaximal singular subspace is contained in at least147

three maximal singular subspaces (see [25, Theorem 1.7.1]). In the latter case the polar space148

is called thick. In the former case, the polar space corresponds to a building of type Dn, which149

have a simply laced diagram. Since these were treated in [5], we only consider the thick polar150

spaces.151

Remark 2.5. If a partial linear space contains no points, or contains at least two points but152

no lines, it is automatically a polar space, of rank 0 or rank 1, respectively.153

Definition 2.6. Let ∆ = (P,L ) be a polar space, and let M be the set of maximal singular154

subspaces. For each submaximal singular subspace U , let P (U) be the set of maximal singular155

subspaces containing U , and let M be the collection of all such sets P (U) for U ranging over156

all submaximal singular subspaces. Then ∆∗ = (M ,M) is a point-line geometry that we call a157

dual polar space. The dual of a dual polar space ∆∗ is the original polar space ∆.158

For two non-collinear points in a polar space, we call the set {x, y}⊥⊥ = ({x, y}⊥)⊥ a hyperbolic159

line.160

2.3. Metasymplectic spaces. Let ∆ = (P,L ) be a point-line geometry. Then we call ∆ a161

metasymplectic space, if the following conditions are satisfied.162

(1) If a point p ∈ ∆ has distance 2 to some other point q ∈ ∆, then either there exists a163

unique point u ∈ ∆, such that p ⊥ u ⊥ q, or p and q are contained in a convex subspace164

of ∆. These convex subspaces are — viewed as point-line geometries on their own —165

isomorphic to thick polar spaces of rank 3 and we call them symplecta, or symps for166

short. If two points p and q span a symplecton, it is commonly denoted by ξ(p, q). Every167

line is contained in a symplecton.168

(2) For every point p ∈ ∆, there exists at least one point q ∈ ∆, such that p and q have169

distance 3.170

(3) For every point p and every symp ξ not containing p, the set p⊥ ∩ ξ is never a point.171

It follows from the Main Theorem of [20] that metasymplectic spaces are in one-to-one cor-172

respondence to (thick) buildings of type F4, together with the choice of an extremal vertex173

of its diagram. We summarise some more properties of such spaces, while, at the same time,174

introducing some more terminology. In the following, let ∆ = (P,L ) be a metasymplectric175

space.176

(i) The maximal distance between two points is 3. Points at distance 3 are called opposite177

as they correspond to opposite vertices of the associated spherical building. If two points178

p and q are opposite, we write p ≡ q. Points p, q at distance 2 not contained in a symp179

are called special, and we write p ⋊⋉ q. For points p, q at distance 2 that are contained in180
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a symp, we say that p and q are symplectic, and we write p ⊥⊥ q. For a subset S ⊆ P, we181

denote by S⊥⊥ the set of all points symplectic to all points of S.182

(ii) Let Ξ be the set of symps of ∆. Singular subspaces of ∆ of dimension 2 are planes. For183

each plane π of a given symp, let Ξ(π) be the set of symps of Ξ containing π. Let Π be the184

set of all such sets Ξ(π), for π ranging over all planes of all symps of ∆. Then ∆∗ = (Ξ,Π)185

is also a metasymplectic space. This is the principle of duality.186

(iii) Under the duality mentioned in (ii), collinear points correspond to symps intersecting in187

a plane, symplectic points correspond to symps intersecting in just a point, special points188

correspond to disjoint symps, for which there exists a unique symp intersecting both in189

respective planes and opposite symps correspond to disjoint symps with the property that190

being symplectic defines a bijection between their point sets inducing an isomorphism.191

(iv) Given a point p ∈ P, we define Lp as the set of lines containing p and Πp as the set192

of planes containing p. If we view each member π of Πp as the set of all lines contained193

in π that go through p, then it follows from the principle of duality that the geometry194

Res∆(p) = (Lp,Πp) is a thick dual polar space of rank 3. We call this geometry the residue195

of ∆ at p. The set of lines through a certain point in a certain plane is called a planar196

line pencil.197

(v) Given a point p and a symp ξ, there are the following three possibilities.198

(a) The point p belongs to ξ.199

(b) The point p is collinear to (all points of) a unique line L = p⊥ ∩ ξ of ξ and each point200

of ξ collinear to L is symplectic to p, while each point of ξ not collinear to L is special201

to p. WE say that p and ξ are close.202

(c) The point p is symplectic to a unique point q ∈ ξ and each point of ξ collinear to q is203

special to p, while each other point of ξ is opposite p.204

(vi) Given two opposite points p, q ∈ P, let E(p, q) be the set of points symplectic to both205

p and q. If we denote by Ξ(p, q) the set of intersections of a symp containing at least206

two points of E(p, q) with E(p, q) itself, then (E(p, q),Ξ(p, q)) is a polar space isomorphic207

to the dual of Res∆(p) ∼= Res∆(q). It is called the equator geometry (with poles p and208

q). The poles are not necessarily unique, and the set of points which can be poles for a209

given equator geometry is called an imaginary line. It follows from this that there is a210

unique imaginary line through two given opposite points p, q and that it coincides with211

(p⊥⊥ ∩ q⊥⊥)⊥⊥. Below, in Section 2.6, we will mention precisely when an imaginary line212

contains more than two points.213

2.4. Opposition, residues, projections and groups of projectivities. Projections and214

groups of projectivities in spherical buildings are defined in general, see Section 3 below. In this215

paragraph we specialise to buildings of type Bn and F4, viewed as polar spaces and metasym-216

plectic spaces.217

Let ∆ be a polar space of rank r. We call two singular subspaces U and V opposite if dimU =218

dimV and no point of U is collinear to all points of V . This coincides with the notion of219

“opposition” in the corresponding building. If d = dimU ≤ r − 1, then we consider the set of220

all singular subspaces of dimension d + 1 that contain U as the point set of a new geometry221

denoted Res∆(U), or briefly Res(U), where each singular subspaces of dimension d+2 containing222

U defines in the natural way a line. That geometry is a polar space of rank r− d− 1 (empty, if223

d = r− 1, of rank 1, if d = r− 2), called the upper residue of U in ∆. The geometry with point224

set U and lines those of U itself is called the lower residue of U in ∆; it is just the singular225

subspace U viewed as a projective space, and we simply denote it by U , for obvious reasons.226

Lower residues are always projective spaces; upper residues are polar spaces.227

Let U and V be two opposite singular subspaces. By [25, Theorem 1.4.11], the map U ⊼ V228

mapping any subspace S ⊆ U to S⊥ ∩ V defines an isomorphism from U to the dual of V and229

is called a (lower) perspectivity. In general, we denote S⊥ ∩ V more systematically as projV (S),230

or, when we want to emphasize the origin, as projUV (S). The composition of (a finite number231

of lower) perspectivities is a lower projectivity. When a lower projectivity has the same image232
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as origin, then we call it a lower self-projectivity. The set of all lower self-projectivities of a233

subspace U forms a group denoted by Π≤(U) and called the general lower projectivity group of234

U . The set of lower self-projectivities, which are the composition of an even number of lower235

perspectivities forms a normal subgroup of Π≤(U) of index at most 2, called the special lower236

projectivity group of U and denoted as Π+
≤(U). If U is a maximal singular subspace, then the237

upper residue is empty and so we denote the respective lower projectivity groups of U as Π+(U)238

and Π(U).239

We can now do the same for upper residues. Let U and V still be opposite singular subspaces.240

The map U⊼V (it will always be clear from te context whether lower or upper residues is meant)241

mapping a subspace U ′ ⊇ U of dimension 1+dimU to the unique subspace V ′ ⊇ V of dimension242

1 + dimV intersecting U ′ in a point, and also denoted by projV (U
′), induces an isomorphism243

from Res(U) to Res(V ), called an upper perspectivity. The composition of (a finite number of244

upper) perspectivities is an upper projectivity. When an upper projectivity has the same image245

as origin, then we call it an upper self-projectivity. The set of all upper self-projectivities of a246

subspace U forms a group denoted by Π≥(U) and called the general upper projectivity group of247

U . The set of upper self-projectivities, which are the composition of an even number of upper248

perspectivities, forms a normal subgroup of Π≥(U) of index at most 2, called the special upper249

projectivity group of U and denoted by Π+
≥(U). If U is a point, then the lower residue is trivial250

and so, since there is no confusion, we denote the respective upper projectivity groups of U as251

Π+(U) and Π(U).252

Now let ∆ be a metasymplectic space. Recall from above that the residue of ∆ at a point is253

always a dual polar space of rank 3. Viewed in the dual ∆∗, the residue at a point p is just the254

rank 3 polar space given by the symplecton corresponding to p. For a line L, the upper residue255

Res∆(L) is the point-line geometry with point set the set of planes of ∆ containing L, and line256

set the set of sets of such planes lying in a common given symp through L. This is always a257

projective plane, which corresponds to the lower residue of L in the dual ∆∗. The lower residue258

of L in ∆ is the projective line L itself, viewed as just a set of points (hence viewed as a polar259

space of rank 1). Similarly, the upper residue Res∆(π) of a plane π is the polar space of rank260

1 with point set the set of symplecta through π. The lower residue of π is just the projective261

plane π.262

Let p, p′ be two opposite points. Then for each symplecton ξ containing p, there exists a unique263

symplecton ξ′ through p′ intersecting ξ in a unique point. The map p ⊼ p′ mapping ξ 7→ ξ′264

induces an isomorphism of Res∆(p) to Res∆(p
′), called a perspectivity. We define in exactly265

the same way as above projectivities, self-projectivities and the special and general projectivity266

group of p, denoted Π+(p) and Π(p), respectively.267

Now let L,L′ be two opposite lines, that is, each point x of L is not opposite a unique point268

x′ of L′ and vice versa. The map L ⊼ L′ given by x 7→ x′ is again a lower perspectivity, and269

we similarly as before define lower projectivities, lower self-projectivities, and the lower special270

and general projectivity groups of L, denoted as Π+
≤(L) and Π≤(L), respectively. For each271

symplecton ξ containing L, there exists a unique plane π′ through L′ all points of which are272

close to ξ. The map L ⊼ L′ (again, it will always be clear from the context whether this is273

between lower or upper residues) given by ξ 7→ π′ induces an isomorphism from Res∆(L) to274

Res∆(L
′) (not preserving types), called an upper perspectivity. Again this gives rise to upper275

projectivities, upper self-projectivities, and the upper special and general projectivity groups of276

L, denoted as Π+
≥(L) and Π≥(L), respectively. For a plane π of ∆, the upper (lower) special and277

general projectivity groups of π in ∆, denoted Π+
≥(π) (Π

+
≤(π)) and Π+

≥(π) (Π
+
≤(π)), respectively,278

are the lower (upper) special and general projectivity groups of π as a line in the dual ∆∗.279

Now let p, p′ be opposite points and ξ, ξ′ opposite symps, with p ∈ ξ and p′ ∈ ξ′. Let L be a280

line with p ∈ L ⊆ ξ. There is a unique line L′′ ∈ ξ′, which is the projection of L onto ξ′, and281

there is a unique line L′ ∋ p′ intersecting L′′ in some point. It follows from [22, 3.19.5] that282

the map {p, ξ} ⊼ {p′, ξ′} given by L 7→ L′ induces an isomorphism from Res∆({p, ξ}) =: Resξ(p)283
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to Res({p′, ξ′}) =: Resξ′(p
′), called a perspectivity. This defines, as before, (self-)projectivities284

and the special and general projectivity group of {p, ξ}, denoted as Π+({p, ξ}) and Π({p, ξ}),285

respectively.286

Finally, let P be a planar line pencil in a polar space or a metasymplectic space. Such a pencil287

is determined by its vertex x and a plane π and consists of all lines through x in π. Similarly288

as in the previous paragraph one defines perspectivities P ⊼P ′ and (self-)projectivities, and the289

special and general projectivity groups of P , which we denote by Π+(P ) (or Π+({x, π})) and290

Π(P ) (or Π({x, π})), respectively, and which are permutation groups of P .291

2.5. Classification of polar spaces. Polar spaces of rank at least 3 have been classified and292

we will give an overview in the following. For that purpose, recall from [22, Section 8.3] (see293

also [25, Section 3.2]) that a polarity of a projective space is a symmetric relation □ between294

the points, such that, (with obvious notation,) p□ is a hyperplane for each point p. A polarity is295

non-degenerate, if p□ is always a proper hyperplane. For a subspace S, we define S□ to be the296

intersection of all x□, for x ∈ S. An absolute subspace for □ is a subspace U with the property297

that U ⊆ U□. The radical of a polarity □ is the image under □ of the full point set. The radical298

is then the intersection of all x□, for x varying over all points. A polarity is called a null-polarity,299

if each point is absolute. Most polar spaces we will review are embeddable into some projective300

space. We also include the rank 1 and 2 polar spaces that arise as residues in higher rank polar301

spaces. In the following, we assume that the reader is familiar with the basic algebraic notions302

of bilinear and quadratic forms. The null set of a quadratic form is a quadric. If a subspace U303

is disjoint from that quadric, then the quadratic form is said to be anisotropic over U . For a304

K-vector space and bilinear form b : V × V → K, the associated polarity □ is defined as p□q if305

b(v, w) = 0, where p and q are the 1-spaces of V generated by v and w, respectively.306

2.5.1. Symplectic polar spaces. These are polar spaces arising from non-degenerate null-polarities,307

that is, non-degenerate polarities in finite-dimensional projective spaces, such that all points of308

the projective space are absolute points. The dimension of the projective space is always odd,309

say 2n − 1, and the rank of the polar space is n. The coordinatising field is always commu-310

tative. These polar spaces are completely and uniquely determined by giving the collinearity311

relation between arbitrary points of the projective space. In standard form, this is given by the312

alternating bilinear form313

f((x−n, . . . , x−1, x1, . . . , xn), (y−n, . . . , y−1, y1, . . . , yn)) = x−nyn − y−nxn + · · ·+ x−1y1 − y−1x1.

2.5.2. Orthogonal polar spaces. These are polar spaces arising from non-degenerate quadratic314

forms of finite Witt index at least 1. Recall that a quadratic form is non-degenerate, if it is315

anisotropic over the radical of the associated bilinear form. In characteristic different from 2,316

this just means that the associated bilinear form is non-degenerate (has trivial radical). The317

polarity associated to the bilinear form is also non-degenerate. In characteristic 2, however, we318

distinguish between non-degenerate quadratic forms with degenerate associated bilinear form319

(and call them inseparable), and those with non-degenerate associated bilinear form (and call320

them separable). We extend this terminology to the other characteristics by calling every non-321

degenerate quadratic form in characteristic not 2 separable. We further extend this terminology322

to the orthogonal polar spaces themselves in the obvious way. In characteristic 2, the associated323

polarity of a separable orthogonal polar space is a non-degenerate null-polarity. The one of an324

inseparable orthogonal polar space is a degenerate null-polarity. Separable orthogonal polar325

spaces admit, up to isomorphism, a unique embedding in some projective space. The difference326

of the dimension of the ambient projective space with twice the rank, plus one, will be called the327

anisotropic corank of the polar space. It is the (maximal) vector dimension of an anisotropic328

form that is needed to describe the corresponding quadric. Quadrics with anisotropic corank329

equal to 0 are hyperbolic quadrics and correspond to buildings of type Dn. If the anisotropic330

corank is 1, we speak about parabolic quadrics and parabolic polar spaces.331
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Since hyperbolic quadrics are related to buildings of type Dn, and we determined the projectivity332

groups of buildings of type Dn in [5], we will not be much concerned with them in this article,333

except that they will show up in some proofs, when we extend the ground field (which we334

explain now in some more detail). According to Theorems 3.4.3 and 4.4.4 of [25], the standard335

equation of a quadric in PG(V ), with V a K-vector space, that corresponds to a polar space of336

rank r, is337

X−rXr + · · ·+X−2X2 +X−1X1 = f0(v0, v0),

where V = V ′⊕V0, with dimV ′ = 2r, {e−r, . . . , e−1, e1, e2, . . . , , er} is a basis of V ′, and a vector338

v ∈ V is written as v = x−re−r + · · ·+ x−1e−1 + x1e1 + x2e2 + · · ·xrer + v0, with v0 ∈ V0, and339

f0 is an anisotropic quadratic form in V0. In the finite dimensional case, if dimV0 is even, then340

the above equation becomes the equation of a hyperbolic quadric over a splitting field, that is,341

an overfield of K over which f0 becomes completely reducible (one can take the algebraic or342

quadratic closure of K). We will use this and note that hyperbolic quadrics have two natural343

systems of maximal singular subspaces. Two maximal singular subspaces belong to the same344

system if and only if the intersection has even codimension in each of them (the codimension of345

U ∩ V in U is dimU − dim(U ∩ V )).346

2.5.3. Pseudo-quadratic polar spaces. These are polar spaces arsing from σ-quadratic forms,
where σ is an involution of a skew field L (and σ ̸= id). We briefly describe these. Let V be
a right vector space over L. Let g : V × V → L be a (σ, id)-linear form (meaning g is additive
in both variables and g(vk, wℓ) = kσg(v, w)ℓ, for all k, ℓ ∈ L and v, w ∈ V ). We define the
following:

Lσ := {t− tσ | t ∈ L}
f : V × V → L, (v, w) 7→ g(v, w) + g(w, v)σ

q : V → L/Lσ, v 7→ g(v, v) + Lσ

Then f is a Hermitian sesquilinear form (meaning it is (σ, id)-linear and f(v, w)σ = f(w, v))347

and we denote its radical by Rf , that is, Rf = {v ∈ V | f(v, w) = 0, ∀w ∈ V }. We say that348

f is associated to q. Suppose q is anisotropic over Rf , that is, q(v) = 0 if, and only if, v = 0,349

for all v ∈ Rf . Let X be the set of vectors v ∈ V for which q(v) = 0. Suppose the subspaces350

of V of maximal dimension, that are contained in X, have finite dimension r. Then the point351

set P = {⟨v⟩ | v ∈ X} of PG(V ), together with the lines induced from PG(V ), is a polar space352

of rank r, called a pseudo-quadratic polar space. This description also makes sense for σ = 1353

(and all embeddable polar spaces, except for the symplectic ones in characteristic distinct from354

2, can be described like this). We call it the pseudo-quadratic description.355

In the commutative case, the Hermitian sesquilinear form f determines the polar space (without356

using the associated pseudo-quadratic form; its points correspond to vectors v ∈ V for which357

f(v, v) = 0) and we call the polar spaces Hermitian. Sometimes the form V → V with v 7→358

f(v, v) is called a Hermitian form.359

2.5.4. Non-embeddable polar spaces. There are two different kinds of non-embeddable polar360

spaces. Non-embeddable polar spaces of one kind are top-thin and arise as the line-Grassmannian361

of a 3-dimensional projective space over a non-commutative skew field. Since the projectivity362

groups of projective spaces are all well known (see for instance [5]), we will not need to consider363

these in the sequel.364

The other non-embeddable polar spaces are thick and each of them arises as the fixed point365

structure of an involution in a building of type E7. In fact, by the main result of [22, Chapter 9],366

for each non-Desarguesian Moufang plane π, there exists a unique polar space of rank 3, whose367

planes are isomorphic to π. We will not need an explicit construction of those polar spaces and368

refer to [9] for an elementary one. We will use some properties of these polar space derived in [17],369

where thick non-embeddable polar spaces are called Freudenthal-Tits polar spaces. However,370

we will need the standard description of the Moufang plane associated to a Cayley division371
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algebra O over a field K. We denote that plane as PG(2,O). Recall that O is an 8-dimensional,372

alternative, quadratic, non-associative composition division algebra with a standard involution373

x 7→ x, such that, for all x ∈ O, we have xx ∈ O and x + x ∈ O. An affine plane can be374

described as the set of ordered pairs (x, y) ∈ O×O, with lines of two types: (1) For m, k ∈ O,375

the line [m, k] contains the points (x,mx+ k), for all x ∈ O; (2) for x ∈ O, the line [x] contains376

the points (x, y), for all y ∈ O. We will need this description in Section 7.2.4.377

2.6. Classification of metasymplectic spaces. According to [22, Chapter 10], buildings378

of type F4 are in one-to-one correspondence with pairs (K,A), where K is a field and A is a379

quadratic, alternative (composition) division algebra over K. Usually, one labels the F4-diagram380

linearly in such a way that the type set {1, 2} corresponds to the residues isomorphic to PG(2,K),381

and {3, 4} to those isomorphic to PG(2,A) (this is also called the Bourbaki labelling). We denote382

such building as F4(K,A). The metasymplectic spaces F4,1(K,A) take the vertices of type 1 as383

points, and hence, its planes are defined over K, whereas F4,4(K,A) takes the vertices of type 4384

as points and has planes defined over A. Quadratic alternative division algebras come in exactly385

five flavours. Note in advance that each such algebra is equipped with a standard involution,386

that is, and involutive anti-automorphism σ, such that xxσ ∈ K and x + xσ ∈ K. The form387

x 7→ xxσ is the norm form.388

(1) A = K. Then F4(K,K) is the so-called split building of type F4. The symps of F4,1(K,K)389

are parabolic polar spaces over K; those of F4,4(K,K) are symplectic polar spaces over390

K.391

(2) A is a separable quadratic extension of K. The symps of F4,1(K,A) are orthogonal polar392

spaces with anisotropic corank 2. The anisotropic quadratic form needed to describe393

those, is exactly the norm form of the Galois extension. The symps of F4,4(K,A) are Her-394

mitian polar spaces, naturally embedded into PG(5,A), and associated to the standard395

involution of A (which is the Galois involution).396

(3) A is a quaternion division algebra over K. The symps of F4,1(K,A) are orthogonal397

polar spaces with anisotropic corank 4. The anisotropic quadratic form needed to de-398

scribe these is exactly the norm form of the quaternion division algebra. The symps399

of F4,4(K,A) are pseudo-quadratic polar spaces, naturally embedded into PG(5,A), and400

associated to the standard involution σ in A.401

(4) A is a Cayley division algebra (or octonion division algebra) over K. The symps of402

F4,1(K,A) are orthogonal polar spaces with anisotropic corank 8. The anisotropic qua-403

dratic form needed to describe these is exactly the norm form of the Cayley division404

algebra. The symps of F4,4(K,A) are the thick non-embeddable polar spaces associated405

to A.406

(5) A is an inseparable extension of K in characteristic 2. The symps of both F4,1(K,A) and407

F4,4(K,A) are inseparable orthogonal polar spaces.408

In general, we denote a symp of F4,1(K,A) as B3,1(K,A), and one of F4,4(K,A) as C3,1(A,K).409

The corresponding dual polar spaces, which are point residues in F4,4(K,A) and F4,1(K,A),410

respectively, are denoted as B3,3(K,A), and C3,3(A,K), respectively.411

In Section 2.3 above, we defined the equator geometry of two opposite points of a metasym-412

plectic space. We can now define the extended equator geometry for the metasymplectic space413

F4,4(K,A). Let p, q be two opposite points of F4,4(K,A). Then the union of all equator ge-414

ometries E(x, y), for x, y opposite points varying over E(p, q), together with all lines in these415

geometries, and in E(p, q), is called the extended equator geometry, denoted as Ê(p, q). Note416

that is contains p and q. It follows from [18] that Ê(p, q) is a polar space whose residues are417

isomorphic to E(p, q) (which are isomorphic themselves to B3.1(K,A), and hence, we denote418

such polar space as B4,1(K,A)).419

We now take a closer look at imaginary lines. Let p, q be two opposite points. By [15, Proposi-420

tion 2.10.5], the imaginary line through p and q coincides with the hyperbolic line through p and421

q in the polar space E(x, y), for any pair of opposite points x, y in E(p, q). Hence, imaginary422
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lines have size 2 in F4,4(K,A) when A is not an inseparable extension of K, including the case423

A = K when charK = 2. In alll other cases, imaginary lines have size at least 3.424

3. Some general observations for buildings of non-simply laced type425

The present section is the only section, where we use some pure building theory. We briefly426

introduce the notions that we will need to use. For more background we refer to the book by427

Abramenko & Brown [1].428

A (thick) spherical building is a (thick) simplicial chamber complex, such that every pair of429

simplices is contained in a finite thin chamber subcomplex, called an apartment, and every two430

apartments are isomorphic through an isomorphism fixing every vertex in their intersection.431

A panel is a simplex, which can be completed to a chamber by properly adding precisely one432

vertex. Adjacent chambers are chambers sharing a panel. The adjacency graph on the set433

of chambers induces a numerical distance functiion on the set of chambers. For each pair of434

adjacent chambers C,C ′ of an apartment there exists a unique folding, that is, an idempotent435

morphism with the property that every chamber is the image of zero or precisely two chambers,436

mapping C ′ to C. The image of a folding is called a root. If α is the root determined by the437

folding C ′ 7→ C, then we denote by −α the opposite root ; namely the one determined by the438

opposite folding C 7→ C ′. The intersection α ∩ (−α) is called the boundary of both α and −α439

and denoted ∂α. The interior of α is α \ ∂α.440

For a simplex F , the residue Res(F ) is the simplicial complex induced on the set of vertices441

v /∈ F such that F ∪ {v} is a simplex. If we work in a building ∆, then, for clarity, Res(F )442

is sometimes also denoted by Res∆(F ). The type of F is the set of types of its members; the443

cotype is the the complementary set of types (with respect to the whole type set). The type of444

the residue Res(F ) is the cotype of F . If F and F ′ are opposite simplices, then for each chamber445

C containing F there exists a chamber C ′ containing F ′ at minimal distance. The mapping446

C \ F 7→ C ′ \ F ′ induces an isomorphism from Res(F ) to Res(F ′) (see [22, Theorem 3.28]),447

which we call a perspectivity. As in the previous section, this gives rise to the notions (even)448

projectivity, self-projectivity, the special projectivity group Π+(F ), and the general projectivity449

group Π(F ).450

Chambers in an apartment are called opposite, if they are never contained in the same root. This451

is independent of the chosen apartment and therefore, we say that chambers are opposite in a452

building, if they are opposite in an apartment. If the building is thick, then this is equivalent to453

saying that there exists a unique apartment containing the two chambers. All spherical buildings454

of rank at least 3 areMoufang, that is, for each root α, the group Uα fixing every chamber having455

a panel in the interior of α, acts transitively on the set of apartments containing α.456

The aim of this section is to extend [5, Theorem A] to spherical Moufang buildings, which are457

not necessarily of simply laced type. We will prove the following theorem.458

Theorem 3.1. Let F be a simplex of a Moufang spherical building ∆. Let Aut+(∆) be the459

automorphism group of ∆ generated by the root groups. Then Π+(F ) is permutation equivalent460

to the action of the stabiliser Aut+(∆)F of F in Aut+(∆) on the residue Res∆(F ) of F in ∆.461

The proof of this theorem, given in [5] for the simply laced case, requires that the unipotent462

radical of a parabolic subgroup in a Moufang spherical building pointwise stabilises the cor-463

responding residue, and acts transitively on the simplices opposite the given residue. For the464

simply laced case, this follows from the Levi decomposition of parabolic subgroups in Chevalley465

groups. In general, we can use [16, Proposition 24.21]:466

Lemma 3.2. Let ∆ be a spherical Moufang building and let F be a simplex of ∆. Let GF467

be the stabiliser of F in Aut+(∆). Then there exists a subgroup UF ≤ GF which acts sharply468

transitively on the set F≡ of simplices opposite F , and which pointwise fixes Res∆(F ).469
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For completeness we describe how the subgroup UF is constructed.470

Let F ′ be a simplex in ∆ opposite F . Choose an apartment Σ containing F and F ′ and a471

chamber C in Σ containing F . For a root α of Σ, let Uα be the corresponding root group; that472

is the group of automorphisms g of ∆ that fixes all chambers that have a panel in the interior473

of α.474

Then UF is the group generated by all root groups Uα corresponding to roots α, such that α475

contains C, and F is in α, but not in the boundary ∂α of α.476

Now exactly the same arguments as in [5] lead to Theorem 3.1. We also recall the following477

general rule, see [5, Observation 3.1].478

Proposition 3.3. Let ∆ be a spherical building over the type set I and let J ⊆ I be self-opposite.479

Let F be a simplex of type J . Then Π+(F ) = Π(F ) if, and only if, the identity in Π(F ) can be480

written as the product of an odd number of perspectivities.481

We will also use [5, Lemma 7.1], which we state now.482

Lemma 3.4. Let ∆ be a spherical building over the type set I and let FK be a simplex of type483

K ⊆ I. Let K ⊆ J ⊂ I and let FJ be a simplex of type J containing FK . Let Π+
K(FJ) be the484

special projectivity group of FJ \ FK in Res∆(FK). Then Π+
K(FJ) ≤ Π+(FJ).485

The following result follows directly from the fact that two chambers are always contained486

in an apartment, and each chamber of an apartment has a unique opposite chamber in that487

apartment.488

Lemma 3.5. In a thick spherical building ∆, given a pair (C,C ′) of distinct chambers, there489

exists a chamber D opposite C and not opposite C ′.490

Finally we recall [5, Proposition 8.2]. A building is said to have thickness at least t+1, if every491

panel is contained in at least t+ 1 chambers.492

Proposition 3.6. If a spherical building has thickness at least t+1, then there exists a chamber493

opposite t arbitrarily given chambers. In particular, there exists a vertex opposite t arbitrarily494

given vertices of the same self-opposite type.495

4. General reduction theorems496

In this section, we prove some results that reduce the computation of the projectivity groups497

to rather special cases. We also establish when the special and general projectivity groups498

generically coincide. We begin with the latter.499

4.1. Special versus general projectivity groups in polar spaces. It is clear that the500

general projectivity group of the lower residue of a singular subspace contains dualities and the501

special group does not. Hence, these are always different.502

Concerning the projectivity groups of the upper residues, the almost completely opposite situ-503

ation holds. Indeed, we have the following result.504

Proposition 4.1. Let ∆ be a thick polar space of rank at least 3. Let U be a non-maximal505

singular subspace of odd dimension at least 1. Then Π+
≥(U) ≡ Π≥(U). The same conclusion506

holds, if ∆ is not a separable orthogonal polar space and U has arbitrary dimension (but is507

non-maximal).508

Proof. Pick a singular subspace U ′ opposite U . If ∆ is non-embeddable, then U and U ′ are509

points or lines and (U⊥∩U ′⊥)⊥ is a thick polar space Γ of rank 1 or 2, respectively (this follows510

from Proposition 5.11 of [17]). Hence, there exists a point or line U ′′ in Γ opposite both U511

and U ′. The projectivity of upper residues U ⊼U ′ ⊼U ′′ ⊼U is the identity, showing the assertion512

in this case.513
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Now suppose that ∆ is embedded in PG(V ), with V minimal; that is, the associated polarity is514

non-degenerate. In this case, the subspace Γ of ∆, induced by the subspace of PG(V ) spanned515

by U and U ′, is a polar space distinct from a hyperbolic space of odd rank. Therefore, Γ contains516

a singular subspace U ′′ opposite both U and U ′. Since the associated polarity in PG(V ) is non-517

degenerate, we have U ′′ ⊆ (U⊥∩U ′⊥)⊥ and so U ⊼U ′⊼U ′′⊼U is the identity. Now the assertion518

follows from Proposition 3.3. □519

4.2. Special versus general projectivity groups in metasymplectic spaces.520

Proposition 4.2. Let p be a point of a metasymplectic space Γ. Then Π(p) = Π+(p) as soon521

as there exists an imaginary line in Γ of size at least 3 and containing p.522

Proof. Let p, q, r be three points of the same imaginary line. Then all points symplectic to both523

p and q are also symplectic to r, which implies that p ⊼ q ⊼ r ⊼ p fixes each symplecton through524

p, and is hence the identity. Now apply Proposition 3.3 □525

From [5, Lemma 5.2] it now follows, for a simplex S of type {1}, {1, 4} or {1, 3, 4} of F4(K,A),526

with K a field and A an alternative quadratic division algebra over K, that Π(F ) = Π+(F ). For527

simplices of type {1, 4} we will come back to this in an explicit way in the proof of Lemma 9.1.528

Also, note that the condition stated in Proposition 4.2 is not necessary, as for split buildings529

the conclusion will hold without the condition being satisfied, see the first line of row (B3) in530

Table 1.531

4.3. Reduction to the product of three perspectivities. In principle, to determine the532

projectivity groups, one has to consider arbitrarily long sequences of perspectivities. How-533

ever, the following results will lead to the fact that projectivity groups are generated by self-534

projectivities which are products of at most four perspectivities in a particular sequence.535

We say that a set Π of automorphisms of a polar space ∆ is geometric, if its members are536

characterised by their fix structure. Formally, this means that an automorphism belongs to Π537

if, and only if, its fix set is a member of a certain given set of subsets of the point set of ∆,538

closed under the action of the full automorphism group of ∆. We will mainly apply this notion539

for fix structures being hyperplanes or subhyperplanes. We now phrase [5, Lemma 8.1] for our540

situation of polar spaces.541

Lemma 4.3. Let ∆ be a polar space of rank r and let j, 0 ≤ j < r, be an arbitrary natural542

number. If j > 0, then suppose that for each quadruple of singular subspaces of dimension j543

containing at least one opposite pair, there exists a singular subspace of dimension j opposite544

all the members of the given quadruple. If j = 0, suppose the same conclusion holds for each545

quadruple of points with the property that the pairwise intersections of the perps are not all the546

same. Let F, F ′, F ′′ be three pairwise opposite singular subspaces of dimension j and denote by547

θ0 the projectivity F ⊼ F ′ ⊼ F ′′ ⊼ F of upper residues, if j < r − 1, and of lower residues, if548

j = r − 1. Denote by Π3(F ) the set of all corresponding self-projectivities of F of length 3 and549

suppose that Π3(F ) is geometric. Then Π(F ) = ⟨Π3(F )⟩ and Π+(F ) = ⟨θ−1
0 θ | θ ∈ Π3(F )⟩.550

The conditions on the quadruple of singular subspaces do not appear in [5, Lemma 8.1]. How-551

ever, in the proof, each considered quadruple (F0, F1, F2, F3) is part of a chain of perspectivities552

F0 ⊼ F1 ⊼ F2 ⊼ F3. Hence, F0 is opposite F1, which is opposite F2, and F2 is opposite F3. Also,553

if j = 0, and if p0, p1, p2 are points, such that p⊥0 ∩ p⊥1 = p1 ∩ p⊥2 , then p0 ⊼ p1 ⊼ p2 = p0 ⊼ p2. So554

we may shorten the chain without altering the projectivity defined by the chain.555

4.4. Reduction to the product of four perspectivities. Now we phrase [5, Lemma 8.17]556

in terms of polar spaces and our situation. In the subsequent remark, we improve on the557

conditions. But first a definition.558
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Definition 4.4. Let ∆ be a polar space of rank n ≥ 2. Let S be a set of singular subspaces of559

dimension s in ∆. We define the s-space-graph Γ(S) = (S,∼), with ∼ denoting the adjacency,560

as follows:561

(V) The vertices are the elements of S.562

(E) • For s = 0, we draw an edge between two vertices in Γ(S), if the corresponding563

points are collinear in ∆.564

• For s ∈ [1, n−2], we draw an edge between two vertices in Γ(S), if the corresponding565

subspaces in ∆ intersect in a subspace of dimension s − 1 and are both contained566

in a common subspace of dimension s+ 1.567

• For s = n− 1, we draw an edge between two vertices in Γ(S), if the corresponding568

maximal subspaces in ∆ intersect in a subspace of dimension s− 1.569

Lemma 4.5. Let ∆ be a polar space of rank r and let j, 0 ≤ j < r, be an arbitrary natural570

number. Suppose that for each pair of singular subspaces F , F ′ of dimension j, the graph Γ(S),571

where S is the set of singular subspaces opposite both F and F ′, is connected. Suppose also that572

there exists a singular subspace opposite any given set of three singular subspaces of dimension573

j. Let F be a given singular subspace of dimension j. Denote by Π4(F ) the set of all self-574

projectivities F ⊼ F2 ⊼ F3 ⊼ F4 ⊼ F of F of length 4 with F ∼ F3, F2 ∼ F4. Suppose that Π4(F )575

is geometric. Then Π+(F ) = ⟨Π4(F )⟩.576

Remark 4.6. In Lemma 4.5 we may also assume that F ∩F3 and F2∩F4 are opposite. Indeed,577

if not, then we can select in ⟨F, F3⟩ a subspace F ′
3 of dimension j disjoint from projF (F2 ∩ F4).578

We then write579

F ⊼ F2 ⊼ F3 ⊼ F4 = (F ⊼ F2 ⊼ F ′
3 ⊼ F4 ⊼ F ) · (F ⊼ F4) · (F4 ⊼ F ′

3 ⊼ F2 ⊼ F3 ⊼ F4) · F4 ⊼ F.

Likewise, if j ≤ r−2, we may also assume that ⟨F, F3⟩ and ⟨F2, F4⟩ are opposite. Indeed, noting580

that a singular subspace U1 through F ∩F3 is opposite a singular subspace U2 through F2 ∩F4581

if, and only if, U1 ∩ (F ∩F3)
⊥ ∩ (F2 ∩F4)

⊥ is opposite U2 ∩ (F ∩F3)
⊥ ∩ (F2 ∩F4)

⊥ in the polar582

space (F ∩F3)
⊥∩(F2∩F4)

⊥ (where we may assume, due to the previous paragraph, that F ∩F3583

and F2 ∩ F4 are opposite), it suffices to verify the claim for i = 0.584

First suppose the line L1 := ⟨F, F3⟩ intersects the line L2 := ⟨F2, F4⟩ in a point p. Select a plane585

π through L1 not in a 3-space with L2, and choose a point F ′
3 in π not on L1 and not collinear586

to L2. As above, we may substitute F3 by F ′
3 in our sequence of perspectivities. Now none of587

⟨F, F ′
3⟩ or ⟨F3, F

′
3⟩ intersect L2, and so we may assume now that L1 does not intersect L2. Then588

there is a unique point p2 on L2 collinear to all points of L1, defining the plane π := ⟨p2, L1⟩.589

We select a plane α through L1 not in a 3-space with π. It follows that projαL2 ∈ L1. Thus we590

may consider any point F ′
3 of α \ L1 and we find that L2 is opposite both ⟨F, F ′

3⟩ and ⟨F3, F
′
3⟩.591

This completes the argument.592

Lemma 4.7. Let ∆ be a metasymplectic space. Suppose that for each pair of points p, p′, the593

graph Γ(S), where S is the set of points opposite both p and p′, is connected. Suppose also that594

there exists a point opposite any given triple of points. Let p be a given point. Denote by Π4(p)595

the set of all self-projectivities p ⊼ p2 ⊼ p3 ⊼ p4 ⊼ p of p of length 4 with p ⊥ p3, p2 ⊥ p4 and pp3596

opposite p2p4. Suppose that Π4(F ) is geometric. Then Π+(F ) = ⟨Π4(F )⟩.597

Proof. The statement, without the condition that pp3 is opposite p2p4, is [5, Lemma 8.17]598

specialised to buildings of type F4 and vertices of type 1 or 4.599

Now let p ⊼ p2 ⊼ p3 ⊼ p4 ⊼ p be a self-projectivity of p with p ⊥ p3 and p2 ⊥ p4. Let L3 be the600

projection of pp3 onto the residue of p2. Set L4 := p2p4. In Res∆(p2), the elements L3 and L4601

have distance 0, 1, 2 or 3 from each other. If they have distance 3, then [22, Proposition 3.29]602

implies that pp3 and p2p4 are opposite. Hence, we may assume that their distance d is 0, 1 or 2.603

Then there exists a line L2 through p2 at distance d+ 1 from L3 in Res∆(p) and at distance 1604

from L4 in that residue, that is, coplanar with L4 in ∆. Let π0 be the plane spanned by L2 and605

L4. Let L1 be the projection of L2 onto (the residue of) p, and let q2 be a point on L2 opposite606
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p. The projection of the line p4q2 from p4 onto p is contained in the projection of π0 onto p, is607

different from the projection of p4p2 onto p and hence, has distance d+ 1 to L3. If we call the608

width of p ⊼ p2 ⊼ p3 ⊼ p4 ⊼ p the distance d in Res∆(p) between the lines pp3 and the projection609

of p2p4 onto p, then we can write610

p ⊼ p2 ⊼ p3 ⊼ p4 ⊼ p = (p ⊼ p2 ⊼ p3 ⊼ q2 ⊼ p) · (p ⊼ q2 ⊼ p3 ⊼ p4 ⊼ p),

where the width of both self projectivities of p on the right hand side is d+1 (look at the inverse611

of the second to see this). An induction argument on d proves the assertion. □612

Remark 4.8. One might wonder, why one would bother to reduce the computation of the613

special projectivity groups to the computation of self-projectivities of length 4, when we can614

reduce it to the computation of those of length 3 with Lemma 4.3. The reason is, firstly, that in615

general, a generic subspace opposite two given subspaces has an algebraically complicated form616

with many parameters (especially when the dimension of F is large). In the length 4 case (see617

Remark 4.6), there are essentially only two single parameters: one to fix F3, and one to fix F4,618

whereas F, F2, F ∩ F3 and F2 ∩ F4 can be chosen freely. Secondly, the conditions are different,619

and sometimes those of Lemma 4.5 are easier to meet than those of Lemma 4.3.620

5. Preparations and auxiliary results621

5.1. Conditions for reduction for polar spaces. In this subsection, we check the conditions622

of Lemma 4.3 and Lemma 4.5 in the cases where we shall apply them. We start with the polar623

spaces.624

Regarding Lemma 4.3, we can be brief: the following is proved in [6].625

Proposition 5.1. Let ∆ be a polar space of rank r ≥ 2. Suppose first that each line contains626

at least four points and let 0 ≤ j < r − 1. Then, if j > 0, for each quadruple of singular627

subspaces of dimension j containing at least one opposite pair, there exists a singular subspace628

of dimension j opposite all the members of the given quadruple. If j = 0, the same conclusion629

holds for each quadruple of points with the property that the pairwise intersections of the perps630

are not all the same. Secondly, suppose that each submaximal subspace is contained in at least631

four maximal singular subspaces, and r ≥ 3, then each quadruple of maximal singular subspaces,632

containing at least one opposite pair, admits a common opposite singular subspace.633

Now we consider the main condition in Lemma 4.5. First we treat the rank 2 case, although we634

only consider the projectivity groups for rank at least 3 — we need the rank 2 case for induction635

purposes. Strictly speaking, we could assume that the rank 2 polar spaces we deal with are636

Moufang, but we prove the result for all generalised quadrangles (with at least four points per637

line and four lines through a point, respectively).638

Proposition 5.2. Let ∆ be a thick polar space of rank 2. Let p1 and p2 be two points. Let S639

be the set of points opposite both p1 and p2. Then Γ(S) is connected, if each line contains at640

least four points.641

Proof. Assume each line contains at least four points. Let q1 and q2 be two points in ∆\(p⊥1 ∪p⊥2 ).642

If q1 and q2 are collinear in ∆, then they are also collinear in ∆ \ (p⊥1 ∪ p⊥2 ). Suppose q1 and q2643

are opposite in ∆. Let L be a line through q1 in ∆.644

If projL(q2) is not equal to projL(p1) or projL(p2), then projL(q2) is a vertex of ∆ \ (p⊥1 ∪ p⊥2 )645

and the lines q2projL(q2) and q1projL(q2) give rise to edges in Γ(∆ \ (p⊥1 ∪ p⊥2 )) that form a path646

between the vertices corresponding to q1 and q2 via the vertex corresponding to projL(q2).647

Only if for every line L through q1 it is the case that projL(q2) is equal to either projL(p1) or648

projL(p2), we can not immediately find such a path. So assume this is the case. Then every649

point in q⊥1 ∩ q⊥2 is either collinear to p1 or to p2.650

Suppose p⊥1 ∩ p⊥2 ∩ q⊥1 ∩ q⊥2 ̸= ∅ and let x be collinear to all of p1, p2, q1, q2. Let L be a line651

through q1 not containing x. Without loss of generality, we may assume that the unique point652
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y on L collinear to q2 is collinear to p1. Let s1 be a point on L not collinear to p2, and distinct653

from q1 and y. Let s2 be the point on q2x collinear to s1. None of s1 or s2 is collinear to either654

p1 or p2 and we have the path q1 ∼ s1 ∼ s2 ∼ q2.655

Hence, we may suppose that each point of q⊥1 ∩ q⊥2 is collinear to either p1, or p2, but never to656

both. Without loss of generality, we may assume that p1 is collinear to at least 2 points o1, o2657

of q⊥1 ∩ q⊥2 . If there are at least 5 points on a line, then there is a point r1 on q1o1 distinct from658

all of q1, o1, projq1o1p2 and projq1o1projq2o2p2. Then we have the path q1 ∼ r1 ∼ projq2o2r1 ∼ q2 .659

Consequently, we may assume that there are exactly 4 points per line, and hence, in view of the660

main result of [2], there are a finite number of lines through each point, say n. By assumption,661

p1 is collinear to m ≥ 2 points o1, o2, . . . , om of q⊥1 ∩ q⊥2 . Hence, there are n−m lines through662

p2 containing a point of q⊥1 ∩ q⊥2 . The other m lines through p2 each have to meet at least one663

of the lines q10i, q2oi, 1 ≤ i ≤ m, and each such line must meet one of those m lines through664

p2. It follows that there is a line L through p2 meeting, without loss of generality, the line665

q1o1 and q2o2. Then the unique points r1 and r2 on q1o1 and q2o2, respectively, distinct from666

q1, q2, o1, o2, q1o1 ∩ L and q2o2 ∩ L, are collinear and opposite both p1 and p2. Hence, we have667

the path q1 ∼ r1 ∼ r2 ∼ q2. □668

Dually, we have:669

Corollary 5.3. Let ∆ be a thick polar space of rank 2. Let L1 and L2 be two lines. Let S be670

the set of lines opposite both L1 and L2. Then Γ(S) is connected, if each point is on at least671

four lines.672

Now we treat the higher rank cases.673

Proposition 5.4. Let ∆ be a thick polar space of rank n ≥ 3. Let U1 and U2 be two singular674

subspaces of dimension s. Let SU1,U2 be the set of all singular subspaces of dimension s opposite675

both U1 and U2. Then Γ(SU1,U2) is connected for s ≤ n− 2, if each line has at least four points676

(this additional condition is not needed for s = 0) and for s = n− 1, if either each submaximal677

singular subspace is contained in at least four maximal singular subspaces or each line contains678

at least four points.679

Proof. The proof goes with induction on the rank n, the base case being Proposition 5.2 and680

Corollary 5.3. However, for s = 0, we provide an independent proof, neglecting the additional681

conditions on the sizes of the lines.682

Case 1: s = 0. Let p1 and p2 be two points. Let ∆ \ (p⊥1 ∪ p⊥2 ) be the point-line geometry683

containing all points of ∆ that are not collinear to either p1 or p2 and all lines of ∆ between684

these points. These lines are exactly the lines L, which are not in a plane with either p1 or p2685

and for which L \ (projL(p1) ∪ projL(p2)) contains more than one point. We have to show that686

the point graph of ∆ \ (p⊥1 ∪ p⊥2 ) is connected.687

Let q1 and q2 be two arbitrary points of ∆ \ (p⊥1 ∪ p⊥2 ). If q1 and q2 are collinear in ∆, then688

they are also collinear in ∆ \ (p⊥1 ∪ p⊥2 ). Suppose q1 and q2 are opposite in ∆. As in the proof689

of Proposition 5.2, we may assume that every point in q⊥1 ∩ q⊥2 is either collinear to p1 or to p2.690

Since q1 and q2 are opposite, q⊥1 ∩ q⊥2 =: Λ defines a thick polar space of rank n− 1 ≥ 2. Both691

p⊥1 ∩Λ and p⊥2 ∩Λ define geometric hyperplanes that we will denote by H1 and H2 and we have692

Λ = H1 ∪H2.693

Suppose H1 and H2 are proper geometric hyperplanes. Then we obtain a contradiction, because694

a polar space can never be the union of two proper geometric hyperplanes (see Exercise 2.5 in695

[25]): Let x be a point of H1 \ H2, such that x⊥ ̸= H1. Then H1 induces a proper geometric696

hyperplane in ResΛ(x) and H2 has to contain the complement. Let M be a line through x that697

is not contained in H1. Then M \ {x} has to be contained in H2 and with that, x has to be698

contained in H2, which is a contradiction.699

So we may assume, without loss of generality, p⊥1 ∩Λ = Λ. Since H2 is a hyperplane, it contains700

two opposite points o1 and o2 and since H2 ⊆ H1 = Λ, the points o1 and o2 are both collinear701
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to q1, q2, p1 and p2 and the lines q1o1 and q2o2 are opposite. Let x1 be a point on q1o1 \ {q1}702

that is not in Λ. The projection of x1 onto q2o2 is a point x2 that is not in Λ and that does not703

coincide with q2. Furthermore, x1 and x2 are not collinear to either p1 or p2 and thus contained704

in ∆ \ (p⊥1 ∪ p⊥2 ). The lines q1x1, x1x2 and q2x2 give rise to edges in Γ(Sp1,p2) that form a path705

q1 ∼ x1 ∼ x2 ∼ q2 between the vertices corresponding to q1 and q2.706

This concludes the proof for the case s = 1. For cases 2 and 3 below we assume that each line707

has at least four points. But before moving to these other cases, we prove a common claim708

under our general assumptions.709

Claim: If 1 ≤ s ≤ n − 1, then different components of Γ(SU1,U2) only contain vertices corre-710

sponding to disjoint subspaces. Indeed, let V1 and V2 belong to Γ(SU1,U2), with x ∈ V1 ∩ V2.711

The projection of x onto Ui is a hyperplane Hi of Ui, i ∈ {1, 2}. With [22, Proposition 3.29],712

it follows that every subspace X through x, that is opposite ⟨x,Hi⟩ in Res(x), is opposite Ui in713

∆. Since Res(x) is a polar space of rank n − 1, it follows from the induction hypothesis that714

we can find a path between the vertices corresponding to V1 and V2 in Γ(SU1,U2). The claim is715

proved.716

Case 2: s = 1. Remember the rank of ∆ is at least 3, so ∆ contains planes. Let L1 and L2 be717

two lines in ∆ and let SL1,L2 be the set of all lines opposite both L1 and L2. Let J1 and J2 be718

two lines of SL1,L2 .719

(I) If J1 and J2 intersect in a point, then by the above claim, we can find a path in Γ(SL1,L2)720

connecting J1 and J2.721

(II) Now suppose J1 and J2 do not intersect in a point, but there is some point x ∈ J1 collinear722

to all points of J2. Set π := ⟨x, J2⟩. Since Jj is opposite Li, i, j = 1, 2, the projection of Li onto723

π is a point ui ∈ π \ (J2 ∪ {x}). Select a line J ′
1 through x avoiding both u1 and u2, then J ′

1 is724

opposite both L1 and L2 and intersects both J1 and J2. By (I) we can connect J1 with J ′
1 and725

J ′
1 with J2.726

(III) Finally, suppose that J1 and J2 are opposite. Let α1 and β1 be two arbitrary planes727

containing J1 and let α2 and β2 be the planes through J2 intersecting α1 and β1, respectively.728

Set a := α1 ∩α2 and b := β1 ∩ β2. If either a or b is not collinear to either L1 or L2, say a, then729

we find a line J ′
1 through a in α1 opposite both L1 and L2, and we are reduced to Cases (I)730

and (II). In the other case, say a ⊥ L1 and b ⊥ Li, i ∈ {1, 2}, there is a unique point a′ in α1731

collinear to L2, and there is a unique point b′ in β2 collinear to Lj , {j} = {1, 2}\{i}. Since lines732

have at least four points, we can now find a line L′
2 in β2 distinct from both J2 and projβ2

a′,733

and avoiding both b and b′. Then we can find a line J ′
1 in α1 through projα1

J ′
2 avoiding a and734

a′. Hence, both J ′
1 and J ′

2 are opposite both L1 and L2 and by (I), L1 and L′
1 are connected735

in Γ(SL1,L2) and L2 and L′
2 are connected in Γ(SL1,L2); by (II) also J ′

1 and J ′
2 are connected in736

Γ(SL1,L2). Hence, L1 and L2 are connected in Γ(SL1,L2).737

Case 3: 2 ≤ s ≤ n − 1. Let U1 and U2 be two singular subspaces of dimension s and V1 and738

V2 both opposite both U1 and U2. On top of the induction on the rank of ∆, we also perform739

an induction on the dimension s of U1 and U2. The base cases here are Case 1 and Case 2.740

(I) If V1 and V2 are not disjoint, then by the above claim, we can find a path in Γ(SU1,U2)741

connecting V1 and V2.742

(II) Secondly, assume V1 ∩ V2 = ∅. Let A1 be some (s− 1)-dimensional subspace in V1. Then743

A1 is opposite some (s − 1)-dimensional subspaces B1 of U1 and B2 of U2. Let A2 be some744

(s− 1)-dimensional subspace in V2 that is opposite both B1 and B2. Then we can find a path745

between A1 and A2 in Γ(SB1,B2). Let A1 = X1, X2, . . . , Xr = A2 be the (s− 1)-dimensional746

subspaces corresponding to all vertices of that path, such that Xj is adjacent to Xj+1 for747

j ∈ {1, 2, . . . , r− 1}. Then Xj is an (s− 1)-dimensional subspace that intersects both Xj−1 and748

Xj+1 in (s− 2)-dimensional subspaces and that is opposite both B1 and B2.749

The projection of Ui onto Xj (for j ∈ {2, 3, . . . , r− 1} and i ∈ {1, 2}) is a singular subspace Wij750

of dimension s containing Xj . Let Wj be an s-dimensional subspace containing Xj opposite751

in Res(Xj) both W1j and W2j . Then, again using [22, Proposition 3.29], Wj is opposite both752
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U1 and U2. Set W1 := V1 and Wr = V2. Since Xj intersects Xj+1, j ∈ {1, 2, . . . , r − 1}, and753

Xj ⊆ Wj , we find that Wj intersects Wj+1, for all j ∈ {1, 2 . . . , r − 1}. Now we can use (I)754

again the find paths between Wj and Wj+1 in Γ(SU1,U2), for j ∈ {1, 2 . . . , r − 1}, which, taken755

together, form one big path between W1 = V1 and Wr = V2 in Γ(SU1,U2). This concludes the756

proof of Case 3.757

For the final case, we assume that each submaximal singular subspace is contained in at least758

four maximal singular subspaces.759

Case 4: s = n− 1. Let M1 and M2 be two maximal singular subspaces and let N1, N2 be two760

maximal singular subspaces opposite both M1 and M2. As in the previous case, by the Claim761

above, we may assume that N1 ∩N2 = ∅, hence N1 and N2 are themselves opposite. We again762

proceed by induction on n, the case n = 2 being Corollary 5.3. So we assume n > 2. Select763

x ∈ N1, and let N be the unique maximal singular subspace containing x and intersecting N2764

in a hyperplane of N2. Then Mi ∩ N is at most a point, i = 1, 2, and we find a hyperplane765

H of N containing x and disjoint from both M1 and M2. Through H, there are at most766

two maximal singular subspaces not opposite either M1 or M2, and so there exists a maximal767

singular subspace N ′ through H opposite both M1 and M2. Applying the claim above to N1768

and N ′, and to N ′ and N2 (which meet in H ∩N2 ̸= ∅), Case 4 is proved. □769

5.2. Conditions for reduction for metasymplectic polar spaces. We now check the con-770

ditions of Lemma 4.7. We will only need the result for points.771

First, we present two lemmas for dual polar spaces. We only need them in rank 3, but the772

proofs are the same for general rank.773

Lemma 5.5. A dual polar space Γ is not the union of two proper geometric hyperplanes.774

Proof. Let H and H ′ be two geometric hyperplanes of Γ with H ∪ H ′ = X, where X is the775

point set of Γ. Recall that a deep point of H is a point of H such that x⊥ ⊆ H. Each point776

outside H belongs to H ′, as well as all points of H that are not deep. We now claim that a deep777

point x of H belongs to H ′ as soon as x⊥ contains a point that is not deep. Indeed, let y ⊥ x778

not be deep and let L be a line through y not contained in H. Let ξ be a symp containing x779

and L. Since x is deep, H ∩ ξ = x⊥ ∩ ξ. Hence, no point of L \ {x} is deep. We conclude that780

L ⊆ H ′, proving the claim. Hence, if H ′ is proper, then the set of deep points of H is closed781

under taking perps. Since Γ is connected, only X is a non-empty subset of points closed under782

taking perps. The lemma now follows. □783

Lemma 5.6. Let H and H ′ be two proper geometric hyperplanes of a dual polar space Γ. Then784

H contains a point x opposite some point x′ ∈ H ′.785

Proof. Let y ∈ H be arbitrary. Suppose no point of H ′ is opposite y. Then H ′ ⊆ y ̸≡. Since no786

point at distance 2 can be removed from y ̸≡ without losing the property of being a hyperplane787

— and then also no point of y⊥ can be deleted — we see that this implies H ′ = y ̸≡, Now let788

x ∈ H be any other point of H (hence x ̸= y). Lemma 3.5 yields a point x′ not opposite y but789

opposite x. Then x′ ∈ H ′ and the assertion is proved. □790

We are now ready to deal with the condition in Lemma 4.7 about the connectivity of Γ(S).791

Lemma 5.7. Let ∆ be a metasymplectic space in which either every line has at least four points792

or each plane is contained in at least 4 symps. For each pair of points p0, p1 the graph Γ(S),793

where S is the set of points opposite both p0 and p1 is connected.794

Proof. (I) Let q0 and q1 be two points opposite both p0 and p1. If q0 and q1 are collinear in795

∆, then they are connected in Γ(S). Suppose q0 and q1 are symplectic in ∆ and denote by796

ξ(q0, q1) the symp containing both of them. Then no pi, for i ∈ {0, 1}, can be contained797

in ξ(q0, q1) and can also not be close to ξ(q0, q1), since otherwise both q0 and q1 would798

not be opposite pi. That means p⊥⊥i ∩ ξ(q0, q1) has to be a unique point ri. We can find799

a path in the graph corresponding to ξ(q0, q1) \ (r⊥0 ∪ r⊥1 ) between q0 and q1.800
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(II) Suppose q0 and q1 are special in ∆. Let q be the unique point collinear to both q0 and q1.801

Then we can not find a path in Γ(S) between q0 and q1 immediately, if q is collinear to802

a point of p⊥0 or p⊥1 . Let p be a point in p⊥0 ∪ p⊥1 collinear to q. We may assume p ⊥ p0.803

We have paths p0 ⊥ p ⊥ q ⊥ q0 and p0 ⊥ p ⊥ q ⊥ q1 and know that p0 is opposite both804

q0 and q1. Therefore, we know that the pairs (p, q0), (p, q1) and (q, p0) are special and if805

p1 has distance 2 to q, then the pair (q, p1) is also special. We first consider this case and806

define p′ as the unique point of p⊥1 ∩ q⊥.807

In the residue of q we can see the lines pq, q0q, q1q and p′q as points. Since Res(q) is808

a dual polar space, we can apply Proposition 5.4 and find a path between the points q0q809

and q1q in Res(q) all members of which are locally opposite pq and p′q. In ∆ we can see810

that path as a chain of planes such that consecutive planes intersect in lines L locally811

opposite both pq and p′q. On each such line L, we choose a point distinct from both q812

and the projection of p1 onto L. The thus obtained path in ∆ connects q0 with q1 within813

p≡0 ∩ p≡1 .814

(III) Suppose q0 and q1 are opposite in ∆. Set Z0 = q⊥0 ∩ q⋊⋉1 . If q ∈ Z0 is opposite both p0 and815

p1, then we can find paths from q0 to q and, by Case (II), from q to q1 in Γ(S) and the816

concatenation is a path between q0 and q1. Suppose such q ∈ Zo does not exist, in other817

words, (p ̸≡0 ∪ p ̸≡1 ) ∩ Z0 = Z0. Now both p̸≡0 and p̸≡1 are geometric hyperplanes of Z0. By818

Lemma 5.5, we may assume Z0 ⊆ p̸≡0 . Set Y0 = Z0 ∩ p ̸≡1 . Likewise, defining Z1 = q⊥1 ∩ q⋊⋉0 ,819

one of p̸≡0 and p ̸≡1 contains Z1. The intersection of Z1 with the other is denoted as Y1.820

Let Y ′
1 be the projection of Y1 onto Z0. Then Lemma 5.6 yields a point x0 ∈ Y0 and a821

point x′1 ∈ Y ′
1 with q0x0 locally opposite q0x

′
1. Projecting x′1 back onto Z1, we obtain a822

point x1 ∈ Y0. Now pick q′1 ∈ q1x1 \ {x1, q1} and note that, by this choice, q′1 ∈ Γ(S).823

Then the projection q′0 of q′1 onto q0x0 is a point distinct from x0 and hence, belongs to824

Γ(S). Since x0 is special to x1, Case (II) implies that x0 and x1 are connected in Γ(S).825

Hence, q0 ⊥ x0 is connected to q1 ⊥ x1 in Γ(S) and the lemma is proved. □826

Now we handle the condition in Lemma 4.7 about the existence of a point opposite three given827

points. It follows from Proposition 3.6 that this condition is automatically satisfied whenever828

the building has no residues isomorphic to the unique projective plane of order 2 (with 3 points829

per line). It follows from the main result in [7] that only triples of points that form a geometric830

line have no common opposite. But such a triple is determined by any pair of its elements. Now,831

it also follows from the proof of Lemma 4.7 in [5, Section 8] that the conclusion of Lemma 4.7,832

possibly without the claim of pp3 being opposite p2p3, holds for all projectivities that can be833

written as a product834

p1 ⊼ p2 ⊼ p3 ⊼ . . . ⊼ p2ℓ−1 ⊼ p2ℓ ⊼ p1,

such that we can find a common opposite for the triples {p1, p2k−1, p2k+1}, for all k = 2, . . . , ℓ−1.835

Hence, if we were able to replace every subsequence p2k−1 ⊼ p2k ⊼ p2k+1, k = 2, . . . , ℓ − 1, for836

which {p1, p2k−1, p2k+1} is a geometric line, with a sequence p2k−1⊼p2k ⊼q2k ⊼p2k ⊼p2k+1, where837

q2k ≡ p2k and none of {p1, p2k−1, q2k} or {p1, q2k, p2k+1} is a geometric line, then the conclusion838

of Lemma 4.5 would still hold. But this can be achieved since, by Lemma 3.5, there exists a839

point q2k opposite p2k and distinct from p1. Since the proof of Lemma 4.5 in the present paper840

does not use the condition of the existence of a point opposite three given points, we conclude841

Lemma 5.8. Let ∆ be a metasymplectic space. Let p be a given point. Denote by Π4(p) the set842

of all self-projectivities p⊼ p2 ⊼ p3 ⊼ p4 ⊼ p of p of length 4 with p ⊥ p3, p2 ⊥ p4 and pp3 opposite843

p2p4. Suppose that Π4(F ) is geometric. Then Π+(F ) = ⟨Π4(F )⟩.844

5.3. Collineations pointwise fixing a (sub)hyperpane. We will see that self-projectivities845

of length 3 in Π(x), for x a point in a polar space ∆, pointwise fix a hyperplane of Res∆(x).846

Therefore, we prove some results about collineations of polar spaces pointwise fixing a hyper-847

plane. We call a collineation of a polar space ∆ that pointwise fixes a geometric hyperplane of848

∆ a reflection (In [12] it is called a symmetry).849
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Lemma 5.9. Let ∆ be a separable quadric of Witt index r ≥ 1 in PG(V ), for some vector space850

V over the field K. We extend the perp-relation to all subspaces of PG(V ) according to the851

non-degenerate polarity defined by the quadratic form defining ∆. Let θ be a central collineation852

of PG(V ) with centre c and axis the hyperplane H := c⊥. If θ maps some point x of ∆ to a853

distinct point xθ of ∆, then θ preserves ∆ and consequently defines a collineation of ∆.854

Proof. If charK ̸= 2, then this is a symmetry as defined by Dieudonné in [12, Section 10] and855

the result follows from that reference.856

Now suppose charK = 2. This situation is less standard, especially when K is not perfect. We857

have to show that, if y is an arbitrary point of ∆, then θ maps y to a point of ∆. Considering858

the plane ⟨x, c, y⟩, this boils down to showing, given a conic C in a plane PG(2,K) and a line L859

through the nucleus n of C , the existence of a non-trivial central elation with a given arbitrary860

centre c on L, with c ̸= n. We can take the conic with equation Y 2 = XZ, and L has equation861

X = kZ, for some k ∈ K. The centre c has coordinates (ℓ, 1, kℓ). Then the non-trivial elation862

pointwise fixing L with centre c and preserving C has matrix863  (1 + ab2)−1 0 b2(1 + ab2)−1

ab(1 + ab2)−1 1 b(1 + ab2)−1

a2b2(1 + ab2)−1 0 (1 + ab2)−1

 ,

as one can check with elementary calculations. This concludes the proof. □864

Lemma 5.10. Let ∆ be a separable quadric of Witt index r ≥ 1 in PG(V ), for some vector865

space V over the field K. We extend the perp-relation to all subspaces of PG(V ) according to866

the non-degenerate polarity defined by the quadratic form defining ∆. Let θ be a collineation867

pointwise fixing a subhyperplane G of PG(V ). Set L = G⊥. We assume that L is not a tangent,868

that is, that either L ⊆ G⊥ with L ∩ ∆ = ∅, or L ∩ G = ∅, and the former only occurs in869

characteristic 2.870

Then θ is the product of two reflections.871

Proof. Suppose first L ∩ G = ∅. Then L is either disjoint from ∆, or intersects it in exactly872

two points. Let x be a point of ∆ not contained in G ∪ L. We also assume that, if L contains873

two points x1, x2 of ∆, then x is not contained in x⊥1 ∪ x⊥2 . As θ fixes every subspace of G, it874

stabilises every subspace through L and hence, it stabilises the plane ⟨x, L⟩. So we can define875

{a} = xxθ ∩ L. If x ⊥ xθ, then a belongs to ∆ and so is one of x1, x2, contradicting our choice876

of x. Hence, a does not belong to ∆. Also, a /∈ x⊥ and a /∈ (xθ)⊥, since a is on a secant through877

x and xθ. Since L⊥ = G, a ∈ L implies G ⊆ a⊥.878

Let θ1 be the unique central collineation with centre a that maps x to xθ and fixes aρ pointwise.879

By Lemma 5.9, θ1 defines a collineation of ∆. Define θ2 to be θθ−1
1 .880

Let c be the point ⟨x,G⟩∩L. Then c maps to ⟨xθ, G⟩∩L = ⟨xθ1 , H⟩∩L under θ1. Consequently881

cθ = cθ1 and so c is fixed under θθ−1
1 = θ2.882

With that, θθ−1
1 fixes G pointwise and also fixes x and c. Hence, it pointwise fixes ⟨x,H⟩, and883

hence, θ = (θθ−1
1 )θ1 is the product of two central collineations.884

Secondly, suppose L ⊆ H. Now L does not contain any point of ∆ and we may pick x in ∆,885

but not in G, arbitrarily. As before, we define a as the intersection of xxθ ∩ L. We also know886

that x is not collinear to xθ.887

Define θ1 as the elation that fixes a⊥ pointwise, has centre a and maps x to xθ. Then, again by888

Lemma 5.9, θ1 induces a collineation in ∆.889

The line xxθ already has two points in the quadric, so there are no more points and therefore890

xθ maps back to x. That means θ is an involution (which we can of course also deduce from891

the fact that charK = 2).892

The map θθ−1
1 fixes H pointwise and fixes both x and xθ. Hence, it pointwise fixes ⟨H,x⟩.893

Consequently, θ = (θθ−1
1 )θ1 is the product of two central collineations. □894
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6. Projectivity groups for upper residues in polar spaces895

6.1. Projectivity groups of points.896

6.1.1. The generic case.897

Proposition 6.1. Let ∆ be a thick embeddable polar space of rank n ≥ 3. Let p1 and p2 be898

two opposite points of ∆, let Γ be the polar space p⊥1 ∩ p⊥2 of rank n− 1 inside ∆ and let H be899

a hyperplane of Γ, obtained as intersection of a projective hyperplane of some projective space900

with some embedding of Γ in that projective space. Let k and k′ be two distinct non-collinear901

points of Γ, both not contained in H. Suppose k⊥∩H = k′⊥∩H. Then there exists a point p3 in902

∆ that is opposite both p1 and p2 with p⊥3 ∩Γ = H, such that the odd projectivity p1⊼p2⊼p3⊼p1903

fixes all lines joining p1 with a point of H, and moves p1k to p1k
′.904

Proof. The fact that p1⊼p2⊼p3⊼p1 fixes all lines through p1 having a point in H implies that p3905

is collinear to all points of H. Also, the fact that p1 ⊼ p2 ⊼ p3 ⊼ p1 maps p1k to p1k
′ implies that906

p3 is on a line L that intersects both p1k
′ and p2k. We select an arbitrary point k′′ on the line907

p1k
′ distinct from both p1 and k′, and we let L be the unique line through k′′ intersecting p2k.908

Set K = k⊥∩H. If H contains lines, then K is a hyperplane of H and so H is determined by K909

and some point h ∈ H \K, meaning that, if a point is collinear to K and h, then it is collinear910

to H. If H only contains points, then the same follows from our assumption that H arises as911

the intersection of a projective hyperplane of some projective space with some embedding of Γ912

in that projective space.913

We now define p3 as the unique point of L collinear to h. Since all of p1, p2, k and k′ are collinear914

to K, also k′′ and all other points of L are collinear to K. In particular, p3 is collinear to K,915

and since it is also collinear to h, it is collinear to H.916

It follows that p1 ⊼ p2 ⊼ p3 ⊼ p1 fixes all lines joining p1 with a point of H, and moves p1k to917

p1k
′. □918

Corollary 6.2. Let ∆ be a thick polar space of rank n ≥ 3 and let H be a hyperplane of ∆. Let919

k, k′ be two points not contained in H such that k⊥ ∩H = k′⊥ ∩H. Then there exists a unique920

collineation θ of ∆ pointwise fixing H and mapping k to k′.921

Proof. First we prove uniqueness,922

Let K be the set k⊥ ∩H = k′⊥ ∩H. Let x be some point of K. Then the line kx maps to the923

line k′x = kθx. Let a be some point on kx not equal to k or x. Then aθ has to be on the line924

kθx. Let y be some point in (a⊥ ∩H) \ (k⊥ ∩H). Then a is the unique point of kx collinear925

to y, and with that, aθ is uniquely determined as the unique point on kθx collinear to yθ = y.926

That means the images of all points in k⊥ and H are uniquely determined. Playing the same927

game with all points of k⊥ \H, and then again and again shows that θ is uniquely determined928

as the complement of a hyperplane in a polar space is always connected.929

Next we prove existence. If ∆ is non-embeddable, then by [8], the only hyperplanes are of930

the form p⊥, for some point p, and then θ is a central elation (see [25, Chapter 5]). If ∆ is931

embeddable, then we can view it as the intersection of p⊥1 and p⊥2 , for two opposite points p1, p2932

of a polar space of rank n+ 1. Then existence follows from Proposition 6.1. □933

Remark 6.3. It can happen that a (thick) polar space ∆ of rank at least 3 possesses a hy-934

perplane H, but that there is no nontrivial collineation of ∆ pointwise fixing it. This is not935

in contradiction with Corollary 6.2, as for such hyperplanes H there do not exist two distinct936

points k, k′ with k⊥∩H = k′⊥∩H. This situation occurs for instance in symplectic polar spaces937

over fields of characteristic 2. Indeed, Let ∆ be a symplectic polar space of rank r at least 3938

over a field K with charK = 2. The universal embedding of such a space corresponds with a (in-939

separable) quadric, and hence there are geometric hyperplanes of ∆ which, as subsets of points940

of PG(2r − 1,K) (in which ∆ is naturally embedded), generate PG(2r − 1,K). Let H be such941
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a hyperplane. Select 2r − 1 points of H that generate a hyperplane J of PG(2r − 1,K). Then942

J = k⊥ for a unique point k of ∆. Hence there is no second point k′ with k⊥ ∩H = k′⊥ ∩H.943

If we combine our results of Proposition 4.1, Lemma 4.3, Proposition 5.1 and Proposition 6.1,944

we obtain the following theorem.945

Theorem 6.4. Let ∆ be a polar space of rank at least 3 with at least 4 points per line, and946

let p be a point. Then Π(x) is the subgroup of the automorphism group of Res(p) generated by947

all reflections of Res(p). If ∆ is not a separable orthogonal polar space, then Π+(p) = Π(x). If948

∆ is a separable orthogonal polar space, then Π+(p) is the subgroup of AutRes(p) consisting of949

products of an even number of reflections.950

We have the following immediate consequence (taking into account that a polar space, which is951

not a separable quadric, automatically has at least 5 points per line, except, if it is a symplectic952

polar space over F2).953

Corollary 6.5. Let ∆ be an embeddable, but not separable orthogonal or symplectic polar space954

of rank at least 2. Then the group of collineations generated by all reflections coincides with the955

group of collineation, which are the product of an even number of reflections.956

6.1.2. Hermitian case and symplectic polar spaces. Noting that, in the case that ∆ is embed-957

dable, in the proof of Proposition 6.1, the hyperplanes H arise as intersections of subspaces958

with Γ, we gather some immediate consequences of Theorem 6.4 in the following statements.959

Corollary 6.6. (i) If ∆ is the polar space arising from a non-degenerate Hermitian form960

(including symmetric bilinear forms) in a finite dimensional vector space over a (commu-961

tative) field, then, for each point p, the group Π(p) is the full linear group preserving the962

Hermitian form that defines Res(p).963

(ii) If ∆ is a symplectic polar space, and p is a point of ∆, then Π(p) = Π+(p) is the simple964

symplectic group corresponding to Res(p), except, if Res(p) has rank 2 and each line exactly965

has 3 points, in which case the group is isomorphic to the symmetric group on 6 letters.966

Proof. The bilinear case of (i) follows directly from Propositions 8 and 14 of [12]. Now let the967

form that defines ∆ be Hermitian with nontrivial field automorphism σ. Since Π+(p) contains968

the little projective group of Res∆(p), [12, Théorème 5] implies that it suffices to show that each969

field element x with xxσ = 1 can be obtained as a determinant of a reflection. It suffices to970

consider the 2-dimensional case (vector space dimension), where this is immediate: the mapping971

(x, y) 7→ (x, ay), with aaσ = 1, preserves the Hermitian form xxσ + kyyσ, has determinant a972

and fixes the hyperplane (0, 1) (and also the point (1, 0), which is the perp of (0, 1)). Now (i)973

follows.974

We now show (ii). By Remark 6.3, Π+(p) is generated by reflections for which the fixed975

hyperplanes are point perps. These are elations and hence Π+(p) is the simple symplectic group976

corresponding to Res(p), if lines have at least 4 points. By Proposition 4.1, Π(p) = Π+(p). The977

statement (ii) for polar spaces with exactly three points per line follows from Theorem 3.1, as the978

stabiliser of a point in the simple symplectic group is the symplectic group of the residue. (This979

argument can in fact also be used as an alternative for the larger symplectic polar spaces.) □980

There remain three things to be addressed in more detail: (1) If ∆ is a separable orthogonal981

polar space, can we be more specific about when Π+(p) = Π(p) (in other words, are there982

generic situations in which this equality always or perhaps never holds true)? (2) If ∆ is983

non-embeddable, then the description of Π(p) above is not very transparent; can we provide a984

description using the bilinear form defining the dual (embeddable) generalised quadrangle? (3)985

The case when lines of ∆ have exactly three points. We begin with (1).986
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6.1.3. Separable orthogonal polar spaces.987

Proposition 6.7. Let ∆ be a separable, orthogonal polar space of rank n with at least 4 points988

per line, and anisotropic codimension r. Let p be a point. If r is even, then Π+(p) has index 2989

in Π(p). If r is odd, then Π+(p) = Π(p).990

Proof. If r is even, then each member of Π+(p) preserves the system of generators of the991

(imaginary) hyperbolic quadric over a splitting field of the quadric, whereas each single reflection992

interchanges these systems.993

Now let r be odd. Since Π(p) contains reflections with arbitrary spinor norm, in particular also994

non-trivial elements with trivial spinor norm, we find products of two reflections (which each995

are products of three perspectivities) with arbitrary spinor norm. The proposition follows. □996

6.1.4. Polar spaces with 3 points per line. Now, we address (3). For symplectic polar spaces997

(which are isomorphic to parabolic polar spaces), this is already contained in Corollary 6.6(ii).998

Hermitian polar spaces never contain exactly three points per line. There remain the so-called999

elliptic ones, having anisotropic dimension 2. For these, Proposition 6.1 implies that Π(p)1000

contains the special (projective) orthogonal group (which is generated by reflections by[12,1001

Proposition 14]). Now, it is clear that Proposition 6.7 is also valid in the present case, and1002

therefore Π+(p) is the simple orthogonal group (which has index 2 in the special orthogonal1003

group).1004

6.1.5. Non-embeddable polar spaces. In order to deal with the thick non-embeddable polar1005

spaces, we first take a look at residues isomorphic to the pseudo-quadratic polar spaces of1006

rank 2 that are dual to separable orthogonal polar spaces of rank 2. We will need the notion of1007

a similitude of a (quadratic or Hermitian) form.1008

A similitude of a form is a linear transformation preserving the form up to a non-zero constant,1009

and in case of a quadratic form, it is called direct if the form is hyperbolic over a splitting field1010

and the similitude preserves each natural system of maximal singular subspaces.1011

Let K be a field with an involution σ, and let F be the subfield pointwise fixed by σ. Let ∆(K,F)1012

be the pseudo-quadratic polar space of rank 3 given by the pseudo-quadratic form1013

Xσ
−3X3 +Xσ

−2X2 +Xσ
−1X1 ∈ F.

In what follows, it is also allowed that K has characteristic 2 and is an inseparable quadratic1014

extension of F (and then σ is the identity).1015

Let pi be the base point corresponding to the xi-coordinate, i ∈ {−3,−2,−1, 1, 2, 3}. Let p be1016

the point with coordinates (1, a−2, 0, 0, a2, k − aσ−2a2), with a−2, a2 ∈ K and k ∈ F. Also, let1017

p(ℓ1, ℓ2) be the point with coordinates (0, ℓ1, 0, 0, ℓ2, 0), with ℓ1, ℓ2 ∈ F. We assume that p is1018

not collinear to either p−3 or p3, that is, k − aσ−2a2 ̸= 0.1019

An elementary calculation shows that the projectivity p−3 ⊼ p3 ⊼ p ⊼ p−3 maps the plane1020

⟨p−3, p−1, p(ℓ1, ℓ2)⟩ to the plane1021

⟨p−3, p−1, p((a
σ
−2a2 + aσ2a−2 − k)ℓ1 − aσ−2a−2ℓ2, a2a

σ
2 ℓ1 − kℓ2)⟩.

It follows that, if Γ is the separable, orthogonal polar space of rank 2 dual to p⊥−3 ∩ p⊥3 , and L1022

is the line of Γ corresponding to the point p−1, then the action on L by the above projectivity,1023

is given in binary coordinates by1024 (
ℓ1
ℓ2

)
7→

(
aσ−2a2 + aσ2a−2 − k −aσ−2a−2

aσ2a2 −k

)
·
(
ℓ1
ℓ2

)
=: A ·

(
ℓ1
ℓ2

)
.

The determinant of the 2× 2-matrix A in the above expression is1025

(k − aσ−2a2) · (k − aσ−2a2)
σ.

Let Γ be embedded in PG(5,F). Note, that the fixed points of the projectivity above form an1026

ovoid of p⊥−3∩p⊥3 and hence, a spread of Γ. Taking six base points on three spread lines, amongst1027
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which we can choose L, we claim that the determinant of the matrix of the corresponding1028

collineation is1029

[(k − aσ−2a2) · (k − aσ−2a2)
σ]3.

Indeed, let M be a second line with two base points. We can choose the basis such that1030

the equation of Γ ∩ ⟨L,M⟩ is x0x2 + x1x3 = 0, where L = ⟨(1, 0, 0, 0), (0, 1, 0, 0)⟩ and M =1031

⟨(0, 0, 1, 0), (0, 0, 0, 1)⟩. The projectivity now fixes every line of Γ∩ ⟨L,M⟩ disjoint from L (and1032

also L). One calculates that the matrix of the collineation is the block matrix1033 (
A 0
0 A

)
.

Doing this for the third line with base points again, the claim follows.1034

Hence, we conclude that special and general projectivity group of the upper residue of p−3,1035

viewed as collineation group of Γ, consist of all similitudes of the associated quadratic form,1036

with factor a norm of the quadratic extension K/F (note that each square of F is such a norm).1037

Writing the equation (in some other basis) of Γ as y−2y2 + y−1y1 = yyσ, where we view the1038

underlying vector space as F× F×K× F× F, with generic coordinates (y−2, y−1, y, y1, y2), we1039

see that the factor of each similitude is a norm.1040

We can now state:1041

Proposition 6.8. Let ∆ be the thick non-embeddable polar space associated with the Cayley1042

division algebra O over the field F with standard involution x 7→ x. Let p be any point of ∆.1043

Then Π(p) = Π+(p) is the group of all direct similitudes of the quadratic form1044

q : F× F×O× F× F → F : (x−2, x−1, x, x1, x2) 7→ x−1x1 + x−2x2 + xx,

and the factor of such similitude is a norm of some element of O.1045

Proof. Let p be a point of ∆. The rank 2 polar space Res∆(p) is dual to a separable quadric of1046

Witt index 2 in PG(11,F), given by the quadratic form mentioned in the statement. Clearly,1047

Π(p) = Π+(p) is contained in the group of all direct similitudes of that quadratic form. So, it1048

sufficed to prove that each such similitude can occur. But this follows from the discussion above1049

taking into account that the pseudo-quadratic polar space ∆(K,F), with K any 2-dimensional1050

subfield of O containing F, is a sub polar space of ∆, with the property that all planes of ∆1051

through a line of ∆(K,F) belong to ∆(K,F). □1052

6.2. Subspaces of dimension at least 1.1053

Lemma 6.9. Let ∆ be a polar space of rank n ≥ 3 embedded into PG(V ) that is not a separable1054

quadric. Let A1, A2, A3 and A4 be singular subspaces of dimension m ≤ n − 2, such that1055

A1 ∩ A3 =: B and A2 ∩ A4 =: C, with B and C opposite and of dimension m − 1, such that1056

Ai is opposite Ai+1 for i ∈ Z/4Z and such that A1 and A3 are not contained in a common1057

subspace. Then A1 ⊼A2 ⊼A3 ⊼A4 ⊼A1 is a product of two collineations in Res∆(A1) that each1058

fix a hyperplane.1059

Proof. We may assume that PG(V ) is minimal, that is, the relation ⊥ defines a non-degenerate1060

polarity of PG(V ).1061

(I) We will first assume that m ≤ n−3. Then A⊥
1 ∩A⊥

2 has rank n−m−1. Since n−m−1 ≥ 2,
A⊥

1 ∩ A⊥
2 ∩ A⊥

3 is a hyperplane of A⊥
1 ∩ A⊥

2 that we will denote by H. If A⊥
4 ∩ A⊥

1 ∩ A⊥
2 = H,

then H is fixed pointwise. So suppose A⊥
4 ∩A⊥

1 ∩A⊥
2 ̸= H. Define:

x1 := C⊥ ∩A1, x2 := B⊥ ∩A2,

x3 := C⊥ ∩A3, x4 := B⊥ ∩A4

Since B and C are opposite, x1 ̸= x3 and x2 ̸= x4. In PG(V ), there are planes ⟨x1, x2, x3⟩ and1062

⟨x1, x3, x4⟩ which share the line ⟨x1, x3⟩ in PG(V ). On the line ⟨x1, x3⟩ in PG(V ), there exists1063

some other point that is contained in ∆, since ∆ is not a separable quadric, and we denote it by1064
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x5. Since every point of C is collinear to x1 and x3, it follows that every point of C is collinear1065

to x5. The subspace ⟨C, x5⟩ is a subspace in ∆ and we denote it by A5. Now A⊥
5 ∩A⊥

1 ∩A⊥
2 = H1066

and with that, we can write φ as the product of the projectivities1067

φ1 : A1 ⊼A2 ⊼A3 ⊼A5 ⊼A1 and φ2 : A1 ⊼A5 ⊼A3 ⊼A4 ⊼A1.

Then φ1 fixes H pointwise and, similarly, φ2 fixes a hyperplane of Res∆(A1) pointwise. There-1068

fore, φ = φ1φ2 is the product of two collineations in Res∆(A1) that each fix a hyperplane1069

pointwise.1070

(II) Now suppose m = n−2. Then the intersection A⊥
1 ∩A⊥

2 ∩A⊥
3 could be empty. In that case,1071

we consider the subspace of PG(V ) spanned by A⊥
3 and intersect it with the subspace spanned1072

by A⊥
1 ∩A⊥

2 . This intersection will be a hyperplane of the subspace spanned by A⊥
1 ∩A⊥

2 and we1073

take this as H. If the hyperplane spanned by A⊥
4 intersects the space spanned by A⊥

1 ∩A⊥
2 in H1074

as well, we are done. Otherwise, we do the same construction as before and obtain a subspace1075

A5, such that the hyperplane spanned by A⊥
5 intersects the space spanned by A⊥

1 ∩A⊥
2 in H and1076

φ = φ1φ2 as before with the same definitions for φ1 and φ2, and the same conclusion holds. □1077

Lemma 6.10. Let ∆ be a polar space of rank n ≥ 3 embedded into PG(V ) that is a separable1078

quadric. Let A1, A2, A3 and A4 be singular subspaces of dimension m ≤ n − 2, such that1079

A1∩A3 =: B and A2∩A4 =: C, with B and C opposite and of dimension m−1, such that Ai is1080

opposite Ai+1 for i ∈ Z/4Z and such that A1 and A3 are contained in a common subspace and1081

A2 and A4 are contained in an opposite subspace. Then θ : A1 ⊼A2 ⊼A3 ⊼A4 ⊼A1 is a product1082

of two collineations in Res∆(A1) that each fix a hyperplane in the ambient projective space.1083

Proof. Since ∆ is a separable quadric, we can view the perp relation as a non-degenerate polarity.1084

Let Γ := A⊥
1 ∩ A⊥

2 . Then Γ has rank n − m − 1. Since m ≤ n − 2, the rank of Γ is at least1085

1. Let H be the hyperplane A⊥
3 ∩ ⟨Γ⟩ and G be the subhyperplane A⊥

4 ∩H. If G = H, we are1086

done. So suppose G is a proper subset of H.1087

Define:

x1 := C⊥ ∩A1, x2 := B⊥ ∩A2,

x3 := C⊥ ∩A3, x4 := B⊥ ∩A4

Let c1 be the point A⊥
2 ∩ ⟨A1, A3⟩ and c2 be the point A⊥

1 ∩ ⟨A2, A4⟩. Note that both c1 and c21088

belong to Γ. We have A⊥
2 ∩⟨A1, A3⟩ ⊆ C⊥∩⟨A1, A3⟩ = x1x3. That means c1 is on the line x1x31089

and analogously c2 is on the line x2x4. Every point of G is collinear to x1 and x3 and with that1090

also to c1 and analogously to c2. That means G ⊆ c⊥1 ∩ c⊥2 , and since G is a subhyperplane of Γ,1091

we have G = ⟨Γ⟩ ∩ c⊥1 ∩ c⊥2 . We may view θ as a collineation in Γ; the fixed points correspond1092

precisely with the points of G.1093

If c1 ⊥ c2, then the singular subspace generated by A1 and A3 is not opposite the one generated1094

by A2 and A4, contradicting our hypothesis. So c1 and c2 are not collinear. Then we can apply1095

Lemma 5.10 and the proof is complete. □1096

Lemma 6.11. Let ∆ be a polar space of rank r ≥ 3, which is a separable quadric in PG(V ).1097

Let 1 ≤ d ≤ r − 2. Let U1 and U2 be two opposite singular subspaces of dimension d. Let W11098

and W2 be two singular subspaces of dimension d + 1, containing U1 and U2, respectively, and1099

intersecting in a point p. Let U3 be a singular subspace of dimension d intersecting ⟨U1, U2⟩1100

in a (d − 1)-dimensional subspace H. Suppose p is not collinear to all points of U3. Then the1101

image of W2 under U2 ⊼ U3 ⊼ U1 is W1 if, and only if, d is odd.1102

Proof. Set ui = projUi
H, i = 1, 2. Since U1, U2 ⊆ p⊥, we find that H ⊆ p⊥. It follows that the1103

line pui is the projection of H onto Wi, i = 1, 2. Consequently, projWi
U3 =: xi ∈ pui, i = 1, 2.1104

Note that by assumption, p /∈ {x1, x2}. We conclude that the image of W2 under U2 ⊼ U3 ⊼ U11105

is W1 if, and only if, x1 ⊥ x2 (the “if”-part follows from the fact that the (2d+ 1)-dimensional1106

subspace of PG(V ) generated by U1 and U2 does not contain singular subspaces of dimension1107
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d+1 as it intersects ∆ in a non-degenerate hyperbolic quadraic). This is equivalent to u1 ⊥ u2,1108

which, on its turn, is equivalent to u1 ∈ ⟨H,u2⟩. This happens if, and only if, U1 and U2 belong1109

to the same natural system of maximal singular subspaces of the hyperbolic quadric obtained by1110

restricting ∆ to ⟨U1, U2⟩. Since hyperbolic quadrics contain opposite maximal singular subspaces1111

of the same natural system if, and only if, their rank is even (and equivalently, the dimension1112

of the maximal singular subspaces is odd), the assertion follows. □1113

This has now the following consequences.1114

Theorem 6.12. Let ∆ be a polar space of rank r at least 3 with at least 4 points per line, and1115

let U be a singular subspace of dimension at most r − 2. Then Π+
≥(U) is the subgroup of the1116

automorphism group of Res(U) generated by products of two reflections of Res(U). If ∆ is not a1117

separable orthogonal polar space, then Π+
≥(U) = Π≥(U) is also generated by all reflections. If ∆1118

is a separable orthogonal polar space, then Π≥(U) = Π+
≥(U), if dimU is odd, and Π(U) is the1119

subgroup of the automorphism group of Res(U) generated by all reflections, if dimU is even. In1120

the latter case, Π≥(U) is not equal to Π+
≥(U), as soon as the anisotropic dimension of ∆ (as a1121

quadric), is even.1122

Proof. Let G1 be the group of collineations of Res(U) generated by the reflections, and let1123

G2 ≤ G1 be its subgroup consisting of those members, which are a product of an even number1124

of reflections.1125

By Lemma 3.4 and Theorem 6.4, G2 ≤ Π+
≥(U). By Lemma 6.9 and Lemma 6.10, we have1126

Π+
≥(U) ≤ G2. This proves the first part of the theorem.1127

If ∆ is not a separable orthogonal polar space, then Π+
≥(U) = Π≥(U) by Proposition 4.1. Then1128

the second assertion follows directly from Corollary 6.5.1129

Now let ∆ be a separable orthogonal polar space. If dimU is odd, then Proposition 4.1 implies1130

Π≥(U) = Π+
≥(U). Now let dimU be even. Then Lemma 6.11 implies that there exists a non-1131

trivial self-projectivity of U of length 3 that fixes a hyperplane of Res(U). It follows now that1132

Π≥(U) is generated by reflections. Finally, if the anisotropic dimension of ∆ (as a quadric) is1133

even, then this is also the case for Res(U). Then each member of Π+
≥(U) preserves the system1134

of generators of the (imaginary) hyperbolic quadric over a splitting field of the quadric, whereas1135

each single reflection interchanges these systems. □1136

The projectivity groups for upper residues in symplectic polar spaces follow directly from The-1137

orem 3.1:1138

Proposition 6.13. If ∆ is a symplectic polar space of rank r, and U is a singular subspace of1139

∆ of dimension d ≤ r − 2, then Π≥(U) = Π+
≥(U) is the simple symplectic group corresponding1140

to Res(U), except if Res(U) has rank 2 and each line has exactly 3 points, in which case the1141

group is isomorphic to the symmetric group on 6 letters.1142

Similarly as for points, we can also handle the case of elliptic polar space with three points per1143

line.1144

Proposition 6.14. Let ∆ be a polar space of rank r with three points per line and distinct from1145

a symplectic polar space. Let U be a singular subspace of dimension d ≤ r − 2. Then Π+
≥(U) is1146

the simple orthogonal group associated to Res(U). If d is odd, then Π≥(U) = Π+
≥(U), whereas,1147

if d is even, Π≥(U) is the special orthogonal group associated to Res(U).1148

A special case of Theorem 6.12 is worth mentioning.1149

Corollary 6.15. Let ∆ be a σ-Hermitian polar space over a commutative field K with anisotropic1150

dimension 0, and let F be the fix field of σ. Let U be a submaximal singular subspace. Then1151

Π+
≥(U) = Π≥(U) is permutation equivalent to PGL2(F).1152
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Since each non-embeddable polar space contains an ideal σ-Hermitian polar subspace (ideal1153

means that every plane of the large space through a line of the subspace belongs entirely to the1154

subspace), we immediately deduce from Corollary 6.15 the following result,1155

Corollary 6.16. Let ∆ be a non-embeddable polar space with planes isomorphic to projective1156

planes over an octonion division algebra with centre K. Let L be a line of ∆. Then Π+
≥(L) =1157

Π≥(L) is permutation equivalent to PGL2(K).1158

7. Projectivity groups for projective residues in polar spaces1159

7.1. Non-maximal projective residues.1160

7.1.1. Embeddable polar spaces. This case is straightforward, using Lemma 3.4. Indeed, the1161

special projectivity group of a subspace D of dimension d of a Desarguesian projective space1162

over the skew field L is the full linear group PGL(d,L), so it also coincides with the special1163

projectivity group inherited from the polar space. For the general projectivity group, we have1164

to add a duality, which is linear, if the polar space is orthogonal or symplectic, but which is1165

semi-linear with companion skew field automorphism σ, if the polar space is associated to a1166

σ-quadratic form. If dimD = 1, then this duality is just a collineation of PG(1,L) (with L the1167

underlying skew field) induced by σ. In the orthogonal case, the duality belongs to PGL2(L)1168

and so the general and special groups coincide; in the other cases the special group has index 21169

in the general group.1170

7.1.2. Non-embeddable polar spaces. Here, the residues have type 1 or 2 in Bourbaki labelling.1171

We look at the lower residue of a line, and at the planar line pencils. We first consider the lower1172

residues of a line.1173

Proposition 7.1. Let ∆ be the non-embeddable polar space associated to the Cayley division1174

algebra O over the field K. Let L be a line of ∆. Then Π+
≤(L) is permutation equivalent to the1175

group of direct similitudes of the quadric of Witt index 1, defined by the anisotropic form given1176

by the norm form of O over K. Also, Π≤(L) is isomorphic to the group generated by Π+
≤(L)1177

and a permutation induced by the standard involution of O, when considering L as a projective1178

line over O.1179

Proof. We begin by noting that the mentioned permutation group is equal to the projectivity1180

group of a line in the Moufang plane PG(2,O), as proved by Grundhöfer [13, Satz]. So, in1181

view of Lemma 3.4, it suffices to show that every (lower) even projectivity of L in ∆ coincides1182

with a projectivity inside some plane of ∆ containing L. Thanks to Lemma 4.5, Remark 4.6,1183

Proposition 5.1 and Proposition 5.4, it suffices to show this for lower projectivities of the form1184

L ⊼ L2 ⊼ L3 ⊼ L4 ⊼ L, where L and L3 intersect in a point p1 and generate a plane π1, where1185

L2 and L4 intersect in a point p2 and generate a plane π2, and where p1 and p2 are opposite,1186

and π1 and π2 are also opposite. Set ci = projπ1
Li, i = 2, 4. Then one observes that, for each1187

x ∈ L, x3 := projL3
projL2

x is contained in the line xc2, and x′ := projLprojL4
x3 lies on the line1188

x3c4. Hence, L ⊼ L2 ⊼ L3 ⊼ L4 ⊼ L coincides with the projectivity L ⊼ c2 ⊼ L3 ⊼ c4 ⊼ L inside π1.1189

This completes the proof of the first part of the proposition.1190

The second part follows from Section 7.1.1 by noting that ∆ contains (many) polar spaces over1191

quaternion subfields. □1192

Proposition 7.2. Let ∆ be the non-embeddable polar space associated to the Cayley division1193

algebra O over the field K. Let P be a planar line pencil of ∆. Then Π+(P ) is permutation1194

equivalent to the group of direct similitudes of the quadratic form of Witt index 1 defined by the1195

norm form of O over K. Also, Π(P ) is isomorphic to the group generated by Π+(L) and the1196

permutation induced by the standard involution of O, when considering P as a projective line1197

over O.1198
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Proof. We identify a line pencil with its point-plane pair. As in the previous proof, it suffices1199

to show that, for line pencils P2, P3, P4, with P ∼ P3 and P2 ∼ P4 (see the next paragraph for1200

more details on the adjacency ∼) such that both P and P3 are opposite both P2 and P4, the1201

projectivity P ⊼ P2 ⊼ P3 ⊼ P4 ⊼ P is a projectivity of P inside the plane it defines.1202

Assume that P = {p, π}, with p a point in the plane π, and likewise Pi = {pi, πi}, i = 2, 3, 4.1203

Then P ∼ P3 means that either π = π3 and p ̸= p3, or p = p3 and π ∩ π3 is a line. Suppose1204

first that π = π3. Let L be the line pp3 and set M := projπp2. Note M ∩L /∈ {p, p3}. Let K be1205

an arbitrary line of P . Then its image under P ⊼ P2 is the line K2 through p2 and projπ2
K. It1206

follows that projπK2 = K ∩M . But then the image K3 of K2 under P2 ⊼ P3 is the line joining1207

p3 with K ∩ M . It follows that P ⊼ P2 ⊼ P3 coincides with the projectivity p ⊼ M ⊼ p3 in the1208

projective plane π.1209

Now assume p = p3 and π ∩ π3 is a line L ∈ P ∩ P3. Set M = projπp2, M3 = projπ3
p2 and1210

M2 = projπ2
p. LetK again be an arbitrary line of P and set x = K∩M , x2 = projπ2

K = projM2
x,1211

K2 = p2x2, x3 = projπ3
K2 = projM3

x2, and K3 = px3. Then we find that K3 is the image of1212

K under P ⊼ P2 ⊼ P3, and x3 is the image of x under M ⊼ M2 ⊼ M3 (lower perspectivities).1213

Hence, P ⊼ P2 ⊼ P3 can be written as the product of p ⊼M in π, with M ⊼M2 ⊼M3 in ∆, and1214

finally M3 ⊼ p in π3. Since a similar decomposition holds for P3 ⊼ P4 ⊼ P , we conclude, using1215

Proposition 7.1, that P ⊼ P2 ⊼ P3 ⊼ P4 ⊼ P is contained in the projectivity group of p inside π.1216

The first part of the proposition is proved.1217

The second part follows from the second part of Proposition 7.1 by noting that, if Q = {q, α} is1218

an arbitrary line pencil opposite P , the perspectivity P ⊼Q is the product of the perspectivity1219

p⊼projπq inside π, the lower perspectivity projπq ⊼projαp and the perspectivity projαp⊼ q inside1220

the plane α. □1221

Remark 7.3. The standard involution of a split octonion algebra interchanges the two systems1222

of maximal singular subspaces, as follows immediately from the fact that it interchanges two of1223

the eight standard basis vectors and maps the others to their additive inverse (in the represen-1224

tation of Zorn). Hence, the general projectivity groups in Proposition 7.1 and Proposition 7.21225

are the groups of all similitudes of the said quadratic forms. This also holds for the quadratic1226

associative division algebras over the field K with non-trivial standard involution. For further1227

use, given a quadratic alternative division algebra A over K with non-trivial standard involution,1228

we denote the group of all permutations of the projective line PG(1,A) corresponding to direct1229

similitudes by PGL+2 (A), and the group of all permutations corresponding to all similitudes by1230

PGL2(A), except, if A is commutative (and this notation would be ambiguous), then we use1231

PGL+2 (A/K) and PGL2(A/K), respectively.1232

7.2. Maximal singular subspaces.1233

7.2.1. Reduction to the composition of four perspectivities.1234

Proposition 7.4. Let ∆ be a polar space of rank r ≥ 3. Let M be a maximal singular subspace.1235

of ∆. Suppose the set of projectivities M ⊼M2 ⊼M3 ⊼M4 ⊼M , with M ≡ M2 ≡ M3 ≡ M4 ≡ M1236

and U0 := M ∩M2 and U1 := M1 ∩M3 opposite submaximal singular subspaces, is geometric.1237

Then Π+(M) is generated by all such projectivities.1238

Proof. This follows from Remark 4.6 and Proposition 5.4. □1239

As we will see below, the projectivities M ⊼ M2 ⊼ M3 ⊼ M4 ⊼ M , mentioned in the previous1240

proposition, are homologies. So proving that the said set is geometric is equivalent to showing1241

that the set of factors of these homologies are closed under conjugation with any element of the1242

underlying skew field.1243
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7.2.2. Computation of the special projectivity group in the general (non-symplectic embeddable)
case. We use the standard form, see [25, Chapter 4]. Let ∆ be an embeddable polar space with
pseudo-quadratic description in PG(V ), for some right vector space V of some skew field L and
let σ be an involution of L. Let V0 be a subspace of V of codimension 2n and let

{ei | i ∈ {−n,−n+ 1, . . . ,−1, 1, . . . , n}}

be a (suitably chosen) basis of a complementary subspace, such that

{⟨ei⟩ | i ∈ {−n,−n+ 1, . . . ,−1, 1, . . . , n}}

is a polar frame. For general vectors v, w ∈ V we write v = v0+
∑

i∈I eixi and w = w0+
∑

i∈I eiyi
(where v0, w0 ∈ V0 and xi, yi ∈ L for all i ∈ I). Then there exists an anisotropic σ-quadratic
form q0 on V0, where q0(v0) = g0(v0, v0) + Lσ, for the (σ, 1)-linear form g0 : V0 × V0 → L, with
associated σ-Hermitian form f0, such that

q(v) = xσ−nxn + · · ·+ xσ−1x1 + q0(v0),

f(v, w) = xσ−nyn + xσny−n + · · ·+ xσ−1y1 + xσ1y−1 + f0(v0, w0)

define the points and collinearity, respectively, of the polar space ∆.1244

Let v0, w0 ∈ V0, t, u ∈ L be such that1245

D := D(v0, w0, t, u) := (g0(w0, w0) + u− uσ)(g0(v0, v0) + t− tσ) + f0(w0, v0) + 1 ̸= 0.

We abbreviate g1 := g0(v0, v0) + t − tσ and g2 := g0(w0, w0) + u − uσ and define the following1246

four maximal singular subspaces.1247 
M1 = ⟨e−1, e−2. . . . , e−n⟩,
M2 = ⟨e1, e2, . . . , en⟩,
M3 = ⟨g1e1 + v0 + e−1, e−2, . . . , e−n⟩,
M4 = ⟨gσ2 e−1 + w0 + e1, e2, . . . , en⟩.

Then, by our condition above, we have M1 ≡ M2 ≡ M3 ≡ M4 ≡ M1 and M1 ∼ M3 and1248

M2 ∼ M4 (cf. Definition 4.4). Set θ := M1 ⊼ M2 ⊼ M3 ⊼ M4 ⊼ M1. Then θ pointwise fixes1249

the hyperplane ⟨e−2, . . . , e−n⟩ of M1 and also the point ⟨e−1⟩. Hence, θ is a homology, and we1250

determine its factor. We can work in the subspace W generated by e−2, e−1, e1, e2 and V0. We1251

write a generic element of that subspace as (x−2, x−1, x0, x1, x2), where all elements belong to1252

L, except x0 ∈ V0.1253

We consider a generic point (1, x, 0, 0, 0) on ⟨e−2, e−1⟩ distinct from e−2, so we may assume x ̸= 0.1254

Its image in M2∩W under the perspectivity M1⊼M2 is the point (0, 0, 0, 1,−xσ). The image of1255

that point inM3∩W under the perspectivityM2⊼M3 is the point (x
−1, 1, v0, g1, 0). Likewise, the1256

image of the latter inM4∩W , under the perspectivityM3⊼M4, is the point (0, g
σ
2 , w0, 1,−xσDσ).1257

Finally, the image of that point in M1 ∩W , back again under the perspectivity M4 ⊼M1, is the1258

point (1, Dx, 0, 0, 0).1259

We can now formulate the main result of this subsection. The set

{D(v0, w0, t, u) | v0, w0 ∈ V0, t, u ∈ L}

will be referred to as the norm set.1260

Proposition 7.5. The special projectivity group of a maximal singular subspace of an embed-1261

dable polar space with pseudo-quadratic description in standard form as above, is generated by1262

homologies with factors in the norm set.1263

Proof. In view of the preceding computations and Proposition 7.4, it only remains to show that1264

the norm set is closed under conjugation with an arbitrary element r ∈ L×. This follows straight1265

from the identities r−1f0(w0, v0)r = f0(w0r
−σ, v0r), r

σ(t− tσ)r = (rσtr)− (rσtr)σ. □1266
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It strongly depends on g0, what exactly the special projectivity group of a maximal singular1267

subspace is. We present a few special cases.1268

For a parabolic polar space of rank r, V0 = L, σ = id and g0(x0, y0) = x0y0. It follows that1269

f0(x0, y0) = 2x0y0, and consequently, D(x0, y0, t, u) = x20y
2
0 + 2x0y0 + 1 = (x0y0 + 1)2. Hence,1270

the special projectivity group here is PGLr(L), if r is odd, and is the linear subgroup of PGLr(L),1271

consisting of the matrices with a square determinant, if r is even.1272

Now, suppose V0 = L⊕L, charL ̸= 2 and σ = id. Let g0 be given by g0((x, y), (x
′y′)) = xx′+ℓyy′.1273

Then D((x, y), (x′, y′), t, u) = (1+xx′+yy′)2+ℓ(xy′−x′y)2 and so the special projectivity group1274

is generated by homologies with factor a norm of the quadratic extension of L corresponding to1275

g0. In the finite case, every element of L is a norm, and then we simply have PGLr(q), q = |L|.1276

For Hermitian polar spaces over commutative fields with non-trivial involution, see the next1277

paragraph.1278

7.2.3. Special projectivity groups for symplectic polar spaces and some Hermitian ones. The1279

previous subsection does not cover the symplectic polar spaces (it would, if we considered1280

skew-Hermitian forms rather than Hermitian forms). However, in this case, the simple group1281

(generated by the root groups) is easy to describe and hence, we can directly use Theorem 3.1.1282

The same method can be applied to Hermitian polar spaces over commutative fields with non-1283

trivial field involution.1284

Proposition 7.6. Let ∆ be a symplectic polar space of rank r, defined over the field K. Let U1285

be a maximal singular subspace. Then Π+(U) ∼= PGLr(K) in its standard permutation represen-1286

tation. Also, Π(U) ∼= PGLr(K)⋊ ⟨ρ⟩, with ρ any linear polarity.1287

Proof. Let ∆ be described by the alternating form1288

(x−ryr + x−r+1yr−1 + · · ·x−1y1)− (y−rxr + y−r+1xr−1 + · · · y−1x1).

Using obvious notation, the subspace U , spanned by e−1, . . . , e−r, is a maximal singular sub-1289

space, and the subspace W generated by e1, . . . , er is an opposite maximal singular subspace.1290

Set X− = (x−1, . . . , x−r) and X+ = (x1, . . . , xr), which we also read as row matrices, then, for1291

every non-singular r × r matrix M , the linear transformation1292

X− 7→ X− ·M t, X+ 7→ X+ ·M−1

induces a linear collineation in PG(2r − 1,K), preserving the above alternating form. Since1293

such a collineation of ∆ belongs to the automorphism group generated by the root elations, as1294

follows from [12, Théorème 1], we find, using Theorem 3.1, that Π+(U) ∼= PGLr(K). Now a1295

single perspectivity induces a linear duality (over K) from one maximal singular subspace to1296

another, concluding the proof of the proposition. □1297

A similar argument can be given to obtain a slightly more concrete version of Proposition 7.51298

in case of Hermitian polar spaces over a commutative field with non-trivial involution. For a1299

given field K and subfield F, let SLr(K;F) be the multiplicative group of r × r matrices with1300

a determinant in F×, and let PSLr(K;F) be the corresponding projective group, that is, the1301

quotient group with its centre.1302

Proposition 7.7. Let ∆ be a Hermitian polar space of rank r, defined over the field K, with1303

non-trivial involution σ and fixed field F. Let U be a maximal singular subspace.1304

(i) If the anisotropic part is trivial, then Π+(U) ∼= PSLr(K;F) in its standard permutation1305

representation. Also, Π(U) ∼= PSLr(K;F) ⋊ ⟨ρ⟩, with ρ any polarity with companion1306

involution σ.1307

(ii) If the anisotropic part is non-trivial, then Π+(U) ∼= PGLr(K) in its standard permuta-1308

tion representation. Also, Π(U) ∼= PGL2(K) ⋊ ⟨ρ⟩, with ρ any polarity with companion1309

involution σ.1310
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Proof. First, we note that a single perspectivity induces a duality with companion field auto-1311

morphism σ (as follows from the computations preceding Proposition 7.5). Hence, the special1312

projectivity group will be a linear group. Let θ be any (linear) collineation of ∆ in the little1313

projective group G† of ∆ stabilising U . Since the automorphism group of ∆ acts transitively1314

on opposite (ordered) pairs of maximal singular subspaces, we may assume that θ stabilises an1315

opposite maximal singular subspace. We consider the standard Hermitian form1316

(xσ−1x1 + · · ·+ xσ−rxr) + (xσ1x−1 + · · ·+ xσrx−r) + f0(x0, x0),

where f0 is an anisotropic Hermitian form on some vector space V0 with shorthand coordinates1317

x0. We take for U the subspace generated by e−r, . . . , e−1. By the above, we may assume that1318

θ also stabilises the maximal singular subspace W , generated by e1, . . . , er. Let θ be given by1319 (
x−1 x−2 . . . x−r

)
7→

(
x−1 x−2 . . . x−r

)
·M t,

with, for now, M any non-singular r × r matrix over K (the transpose is taken for notational1320

reasons) with determinant k ∈ K×. It is clear that the action of θ on W is described by1321 (
x1 x2 . . . xr

)
7→

(
x1 x2 . . . xr

)
·M−θ.

(i) If V0 is trivial, then the determinant of θ as a linear map in PG(2r − 1,K) is equal to1322

ℓ := kk−θ. Then, according to [12, Théorème 5], θ belongs to G† if, and only if, ℓ = 1,1323

that is, k = kθ. Now the statement of (i) follows.1324

(ii) Suppose now that V0 is not trivial. Since PGLr(K) is the full group of linear transforma-1325

tions, it suffices to show the assertion in the case of dimV0 = 1. Then we may assume1326

f0(x0, x0) = a0x
σ
0x0. We define the action of θ on the coordinate x0 as x0 7→ ℓ−1x0.1327

We find that f0(ℓx0, ℓx0) = a0ℓ
σℓxσ0x0 = a0x

σ
0x0, since ℓσℓ = 1, as one computes. With1328

that, the determinant of θ as a linear map in PG(2r,K) is equal to 1, and hence, by [12,1329

Théorème 5] again, θ belongs to G†. This proves the assertions in (ii). □1330

7.2.4. Non-embeddable polar spaces. In this case, we could do a computation similar to the one1331

performed in the previous subsection. However, using a result from [17], it is more efficient to1332

use Lemma 4.3. Let O be a Cayley division algebra over the field K with standard involution1333

x 7→ x, and let PG(2,O) be the associated projective plane, coordinatised as in Section 2.5.4.1334

Then, for all k, ℓ ∈ K, the mapping with action on the points (x, y), with y ̸= 0, given by1335

(x, y) 7→ [ky−1x, ℓy−1]

induces, by [17, Section 6.2], a polarity ρ(k, ℓ) of PG(2,O), which we call a standard polarity.1336

Remark 7.8. Replacing O with any quadratic associative division algebra A, the above expres-1337

sion remains a polarity in the corresponding projective plane, and we also call such a polarity1338

a standard polarity (with respect to the given quadratic structure, that is, relative to the field1339

K, which might not be determined by A, if A is commutative). If the standard involution of A1340

is non-trivial, then the polarity is Hermitian.1341

The following result is now an immediate consequence of the computations in [17, Section 6.2].1342

Lemma 7.9. Let ∆ be a thick non-embeddable polar space of rank 3. Then every perspectivity1343

π1 ⊼ π2 ⊼ π3 ⊼ π1, with π1, π2, π3 pairwise opposite planes, is a standard polarity.1344

Noting that the class of standard polarities is geometric, we immediately conclude that Π(π),1345

for π a plane of a non-embeddable thick polar space, is the group generated by all standard po-1346

larities. We can be slightly more specific. Recall, that a projective collineation is a collineation,1347

which induces a projectivity on at least one line (and hence on all lines). The set of such1348

collineations forms a group, called the full projective group, which we denote by PGL3(O), with1349

slight abuse of notation (because there does not exist a 3-dimensional vector space over O).1350

Proposition 7.10. Let ∆ be the thick non-embeddable polar space associated with the Cayley1351

division algebra O over the field K. Let π be any plane of ∆. Then Π+(π) is the full projective1352

group of PG(2,O), whereas Π(π) is the full projective group extended with a standard polarity.1353
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Proof. By [17, Section 6.2], the action of ρ(k, ℓ) on lines [m, k], with k ̸= 0, is given by1354

[m, k] 7→ (k−1ℓmk
−1

, ℓk
−1

).

We can calculate the action of ρ(k, ℓ)ρ(1, 1) on the points (x, y), y ̸= 0 and obtain1355

(x, y) 7→ (kℓ−1x, ℓ−1y).

Setting ℓ = 1, we see that we obtain all homologies with axis [0] and centre (0). Then the1356

assertion follows from [19, Satz 3]. □1357

8. Projectivity groups of points of metasymplectic spaces1358

For the first proposition of this section, one might benefit from having a clear visualisation of an1359

apartment of a building of type F4. We provide one below. It is a graph, for which its vertices1360

correspond to the vertices of type 1 (with the usual Bourbaki labelling) of the said apartment,1361

the edges are those of type 2 , the 3-cliques are those of type 3, and the (skeletons of the)1362

octahedra are the vertices of type 4.1363

p q

v

u

r

s

ap

bp

aq

bq

Np
Nq

Wp
Wq

Mp Mq

αp

βp

1364

As in [5], we call a collineation of a polar space a homology, if it pointwise fixes two opposite1365

planes, which we call the axes of the homology.1366

Proposition 8.1. Let p be a point of a metasymplectic space Γ. Let q be any opposite point,1367

and let s ⊥ p and r ⊥ q be further points such that ps ≡ qr, p ≡ r and q ≡ s. Then the1368

projectivity ρr,s : p⊼q⊼s⊼r⊼p is a homology of the polar space ∆p, corresponding to the residue1369

at p, which pointwise fixed planes αs and αr, the planes corresponding to the lines sp and the1370

projection of rq onto p, respectively. Moreover, if L is any line of ∆p intersecting αr and αs1371

non-trivially, then r and s can be chosen, such that the projectivity ρr,s maps a given plane of1372

∆ through L, not adjacent to either αr or αs, to any other such plane.1373

Proof. The line L of ∆p corresponds to a plane α through p in Γ. Let Σ be an apartment in Γ1374

containing the opposite lines ps and qr, containing the points p and q, and containing the plane1375

β (this will only be crucial in the last part of the proof; hence, in the first part, we will not use1376

this information). Let αp and βp be two planes in Σ through p that intersect in a line, and let1377

s ∈ βp. Also, for the last part of the proof (Claim 3), we choose these planes such that αp = α.1378

Let Mp and Np be the lines in αp and βp, respectively, that are closest to q (meaning the points1379

of these lines have distance two to q and are special to q). We denote by ap the intersection1380
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point of Mp and Np. Let Mq and Nq be the lines in q⊥ ∩ Σ, such that each point of Mq (Nq,1381

respectively) is collinear to a unique point of Mp (Np). Let u be the point of Σ that is collinear1382

to all points of Mp, Np, Mq and Nq. Let Wp be the line of Σ that intersects αp in exactly one1383

point, whose points are all collinear to p and at distance 2 to q and which does not contain a1384

point collinear to Np. Let bp be the intersection point of Mp and Wp. Again, let Wq be the line1385

in q⊥ ∩ Σ, such that each point of Wq is collinear to a unique point of Wp. Consider the plane1386

⟨Mp, u⟩ and let S ⊆ ⟨Mp, u⟩ be the line through ap collinear to s (this line exists considering1387

the symp containing p and u). We note that the plane ⟨S, s⟩ intersects αp exactly in the point1388

ap, is not contained in p⊥ and since s has distance 3 to q, we have u /∈ S.1389

Let ξ be the octahedron of Σ containing Mp, Mq and u. Let v be the point in ξ that is opposite1390

u and collinear to every point of Mp and Mq. Note that v is also collinear to Wp and Wq. Hence,1391

v and q are contained in a common symp.1392

Let aq be the point Mq ∩ Nq; that is the unique point of Mq and Nq that is collinear to ap.1393

Then ⟨ap, aq, v⟩ spans a plane of Σ. We denote the point Mq ∩Wq by bq.1394

Claim 1. We claim that the projectivity p⊼ q⊼ s⊼ r⊼p stabilises the planes ⟨p,Np⟩ and ⟨p,Wp⟩1395

and fixes the lines pap and pbp.1396

Indeed, the plane ⟨p,Np⟩ maps to ⟨q,Nq⟩ under the first projection and back to ⟨p,Np⟩ under1397

the second projection. It then maps to some plane through r, but since that plane is the image1398

of ⟨p,Np⟩, it maps back to ⟨p,Np⟩ under the fourth projection. Similarly, ⟨p,Wp⟩ projects to1399

⟨q,Wq⟩, to some plane through s and then back to ⟨q,Wq⟩ and ⟨p,Wp⟩.1400

The line pap maps to qaq, sap, the line between r and R ∩ vaq and back to pap. The line pbp1401

maps to the line between q and Wq ∩Mq, maps to the line between s and S ∩ ubp, maps to the1402

line between r and Wq ∩Mq and back to pbp.1403

Claim 2. We claim that the projectivity p ⊼ q ⊼ s ⊼ r ⊼ p stabilises all planes through ps.1404

This follows from Step 1 by varying Σ through {p, ps} and {q, qr}.1405

Claim 3. We claim that we can always define s and r in a way, such that the projectivity1406

p ⊼ q ⊼ s ⊼ r ⊼ p moves a line px with x on Mp to a line px′ with x′ on Mp, x ̸= x′ and1407

x, x′ /∈ {ap, bp}.1408

Let x and x′ be two distinct points on Mp not equal to ap or bp. Let x1 be the unique point of1409

Mq collinear to x. Then px moves to qx1 under the first projection.1410

Considering the symp spanned by ξ, we can see that x1 must be collinear to a unique point x21411

of S. With that, qx1 has to move to sx2 under the second projection. The points x2 and x′1412

are both each collinear to a line of ⟨v, aq, bq⟩. These lines are distinct as x1 belongs to one of1413

them but not the other. We define x3 as the intersection point of these two lines. Let R be1414

the connection line between bq and x3. Every point of R \ {bq} is collinear to the same line of1415

⟨q,Wq⟩ through bq that we will denote by R′. In Σ we see that Wq and qbq form a triangle and1416

we denote the third point of that triangle in Σ by cq. We define r to be the intersection point1417

of R′ and qcq. Then sx2 moves to rx3 under the third projection and to px′ under the last1418

projection as desired. □1419

We now first handle the case of type 1 vertices in F4(K,A), with A a quadratic alternative1420

division algebra over K. We may assume that |A| > 2 as otherwise the groups of projectivity1421

coincide with the full group of collineations Sp6(2) by Theorem 3.1, since that group is also1422

generated by the elations.1423

We denote by PSp2ℓ(K) the group of all collineations of Cℓ,1(K,K) preserving the associated1424

alternating form, ℓ ≥ 2. It is a simple group. We denote by PSp2ℓ(K) the group generated by1425

PSp2ℓ(K) and the diagonal collineations, that is, the linear collineations of the underlying vector1426

space mapping the associated alternating form to a nonzero scalar multiple and represented by1427

a diagonal matrix.1428
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If charK = 2, and K′ is an overfield of K all of whose squares are contained in K, then the polar1429

space Cℓ,1(K′,K) is a polar subspace of Cℓ,1(K′,K′), and we denote the restriction of PSp2ℓ(K′)1430

to Cℓ,1(K′,K) by PSp2ℓ(K′,K).1431

Likewise, for A a separable quadratic extension of K, when U6(A/K) is the (simple) unitary1432

group preserving a Hermitian form and whose elements correspond to matrices of determinant1433

1, then we denote by U6(A/K) the group generated by U6(A/K) and all diagonal automorphisms1434

with diagonal elements in K (with respect to the standard form).1435

Now let A be a quaternion division algebra over K. Let U6(A) denote the (simple) collineation1436

group of C3,1(A,K) generated by the elations, then the group generated by all elations and1437

diagonal automorphisms (with factors in K and with respect to the standard form) is denoted1438

by U6(A). Note that we do not need to mention K in the notation, since it is unique as the1439

centre of A.1440

Finally, let A be a Cayley division algebra over K. Here, there is no form of the corresponding1441

polar space available (since it is non-embeddable) and hence we cannot consider diagonal auto-1442

morphisms as in the previous paragraphs. However, we can either consider the group generated1443

by all elations and homologies (which for the previous cases would have boiled down to the1444

same groups), or all elations and the diagonal automorphisms of the universal embedding of the1445

corresponding dual polar space, see the proof of Lemma 8.2. We denote these automorphism1446

groups by E
(28)
7,3 (A) and E

(28)
7,3 (A), respectively.1447

Lemma 8.2. Let ∆ be a polar space of rank 3 isomorphic to C3,3(A,K), with A a quadratic1448

alternative division algebra over K, and let α and β be two disjoint planes. Let L be a line1449

intersecting both α and β non-trivially. Then there exists a unique homology with axes α and1450

β and mapping a given plane π though L, not adjacent to either α or β, to an arbitrary other1451

given plane like that. In particular, there is a unique set of homologies with axes α and β, acting1452

transitively on the set of planes through L, not adjacent with either α or β, and hence, such a1453

set is geometric.1454

Proof. This is best seen through the (universal) representation of the corresponding dual polar1455

space in a projective space over K, as established uniformly in [10]. We take the slightly1456

more symmetric algebraic description from [11, Definition 10.1]. Let V be the vector space1457

K4 ⊕A3 ⊕K3 ⊕A3 ⊕K (note that we view A as a vector space over K in the natural way, that1458

is, coming from the algebra over K). Then the projective (or Zariski) closure of the point set1459

given by the following parameter form, with the induced line set, forms the dual polar space1460

C3,3(A,K). We denote by x 7→ x the standard involution in A.1461

(1, ℓ1, ℓ2, ℓ3, x1, x2.x3, x1x1 − ℓ2ℓ3, x1x1 − ℓ2ℓ3, x1x1 − ℓ2ℓ3,
1462

ℓ1x1 − x2x3, ℓ1x1 − x2x3, ℓ1x1 − x2x3, ℓ1xx1 + ℓ2x2x2 + ℓ3x3x3 − x1(x2x3)− x3(x2x1)− ℓ1ℓ2ℓ3),

where ℓ1, ℓ2, ℓ3 ∈ K and x1, x2, x3 ∈ A. We let α and β correspond to the points a =
(1, 0, 0, . . . , 0) and b = (0, 0, . . . , 0, 1), respectively, We write coordinates of points of PG(V )
as 14-tuples with entries in K ∪ A in the natural way, according to the definition of V above.
Then one sees that the set of points a⊥ ∩ b̸≡ spans the subspace (0, ∗, ∗, ∗, ∗, ∗, ∗, 0, . . . , 0) and
a̸≡ ∩ b⊥ spans the subspace (0, . . . , 0, ∗, ∗, ∗, ∗, ∗, ∗, 0). Each homology with axes α and β has to
fix all points of these subspaces, and one can see that such a homology stems from the following
linear map, where t ∈ K×:

V → V

(k, ℓ1, ℓ2, ℓ3, x1, x2, x3,m1,m2,m3, y1, y2, y3, k
′)

7→ (k, tℓ1, tℓ2, tℓ3, tx1, tx2, tx3, t
2m1, t

2m2, t
2m3, t

2y1, t
2y2, t

2y3, t
3k′)

According to [10], the line generated by a′ = (0, 0, 1, 0, 0, . . . , 0) and b′ = (0, . . . , 0, 1, 0, 0, 0, 0, 0, 0)1463

corresponds to a line joining a point of α with one of β (in the coordinates of [10] these points1464

are (0, 0, 0, 0, 0) and (0, 0), and the line has type (I)). The point a′ is collinear to a and b′ to1465
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b. The above linear mappings, for varying t ∈ K×, act (sharply) transitively on the points of1466

a′b′ \ {a′, b′}.1467

This proves the lemma. □1468

Corollary 8.3. Let v be a vertex of type 1 in F4(K,A), with A a quadratic alternative division1469

algebra over K, |A| > 2. Then Π+({p}) is generated by all homologies of the corresponding1470

polar space.1471

Proof. This follows from Lemma 5.8, Lemma 8.2 and Proposition 8.1. □1472

In view of Proposition 4.2, this proves the case (C3) of Table 11473

We now consider vertices of type 4 in F4(K,A). Since F4,1(K,K′) ∼= F4,4(K′2,K), if charK = 21474

and K′ is an inseparable extension of K, we may restrict ourselves to the case, where A is1475

separable; that is, either equal to K with charK ̸= 2, or a separable quadratic extension of K1476

(in any characteristic), or a quaternion or octonion division algebra over K.1477

First we consider the case A = K, with charK ̸= 2. Let p be a point of F4,4(K,K). We have the1478

following analogue of Lemma 8.2.1479

Lemma 8.4. Let ∆ be a parabolic polar space of rank 3 over the field K with charK ̸= 2, and1480

let α and β be two disjoint planes. Let L be a line intersecting both α and β non-trivially.1481

Then there exists a unique homology with axes α and β mapping a given plane π though L, not1482

adjacent to either α or β, to an arbitrary other given plane like that. In particular, there is1483

a unique set of homologies with axes α and β acting transitively on the set of planes through1484

L, not adjacent with either α or β, and hence such set is geometric. Also, there is a unique1485

homology with axes α and β that is a reflection.1486

Proof. We consider the standard equation of a parabolic quadric in PG(6,K), that is,1487

X−3X3 +X−2X2 +X−1X1 = X2
0 .

We write the coordinates as (X−3, X−2, X−1, X0, X1, X2, X3). We can take, with self-explaining1488

notation,1489 
α = (∗, ∗, ∗, 0, 0, 0, 0),
β = (0, 0, 0, 0, ∗, ∗, ∗),
L = ⟨(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0)⟩.

Then πk = ⟨L, (0, 0, k−1, 1, k, 0, 0)⟩, k ∈ K×, is a generic plane through L in ∆ not adjacent to1490

either α or β. With that, the linear map1491

(x−3, x−2, x−1, x0, x1, x2, x3) 7→ (x−3, x−2, x−1, kx0, k
2x1, k

2x2, k
2x3)

maps π1 to πk. This is a reflection if, and only if, it fixes each point with x0 = 0, that is, if, and1492

only if, k2 = 1, or k ∈ {1,−1}.1493

Now suppose a homology φ with axes α and β also stabilises the plane π1. Then φ stabilises1494

each line of π1 through π1∩α (as such a line is the projection onto π1 of some fixed point of α),1495

and also each line of π1 through π1 ∩β (for the analogous reason). Hence, π1 is fixed pointwise,1496

and this readily implies that PG(6,K) is fixed pointwise.1497

All assertions are proved. □1498

We denote by O7(K) the group of linear collineations of a 7-dimensional vector space V over1499

K, preserving the bilinear form associated to the standard equation of a parabolic quadric in1500

PG(6,K), and by PO7(K) the quotient with its centre. Note that the former coincides with1501

O+
7 (K) with the notation of [12], as dimV = 7 is odd. We then have:1502

Lemma 8.5. Let p be a point of F4,4(K,K). Then Π+(p) = Π(p) ∼= PO7(K) in its standard1503

action.1504
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Proof. By Lemma 5.8, Proposition 8.1 and Lemma 8.4, Π+(p) is generated by all homologies,1505

hence, it is contained in PO7(K). Now let q be opposite p and consider the extended equator1506

geometry Ê(p, q). If we now restrict to perspectivities x ⊼ y with x and y points of Ê(p, q),1507

then we see that the special projectivity group of p in B4,1(K,K) ∼= Ê(p, q) is a subgroup of the1508

special projectivity group Π+(p) inside ∆. Hence Corollary 6.6 yields PO7(K) ≤ Π+(p). Also,1509

using Proposition 6.1, we find that there exists a self-projectivity of ∆ of length 3, exhibiting a1510

reflection of the residue in p. Hence, Π+(p) = Π(p) = PO7(K) and the proof is complete. □1511

This takes care of the first line of (B3) of Table 1 (and note that for charK = 2, the groups1512

PO7(K) and PSp6(K) coincide, so we do not have to require that charK ̸= 2 on that line in the1513

table).1514

Now let A be a separable quadratic alternative division algebra over the field K, with d :=1515

dimKA ∈ {2, 4, 8}. Let ∆ be the polar space of rank 3, obtained from the quadric in PG(5+d,K)1516

with standard equation1517

X−3X3 +X−2X2 +X−1X1 = norm(X0),

where the coordinate X0 belongs to A, viewed as vector space over K in the natural way, and1518

where norm(X0) = X0X0, with X0 7→ X0 the standard involution in A with respect to the1519

quadratic algebra structure. Let V be the vector space K3 ⊕ A ⊕ K3. Then we denote by1520

Od+6(K,A) or Od+6(K,A) the group of all linear transformations of V preserving the quadratic1521

form associated with the above equation, or mapping it to a scalar multiple (the similitudes;1522

the corresponding scalar is called the factor of the similitude), respectively, and we denote1523

with POd+6(K,A) and POd+6(K,A) the respective quotients with the centre. Let F be a split-1524

ting field of A, that is, a quadratic extension of K over which A splits as an algebra. Then1525

there are two natural systems of maximal singular subspaces (corresponding to those of the1526

associated hyperbolic quadric) of the corresponding quadratic form over F. The subgroups of1527

Od+6(K,A) and Od+6(K,A), preserving each of these systems, will be denoted by O+
d+6(K,A) and1528

O
+
d+6(K,A), respectively, partially following Dieudonné [12] (instead of the bilinear form, we in-1529

cluded the algebra in the notation). The corresponding projective groups are then PO+
d+6(K,A)1530

and PO
+
d+6(K,A).1531

Furthermore, let α and β be two opposite planes of ∆. Then we say that the homology group1532

with axes α and β acts transitively, or is a transitive homology group if for some line L inter-1533

secting both α and β non-trivially (and then for each such line), and each pair of planes π, π′
1534

through L but not intersecting either α or β in a line, there exists a homology with axes α and1535

β mapping π to π′.1536

Note that the factors of the similitudes are precisely the non-zero norms of A.1537

We now prepare for the determination of the projectivity groups of a point in F4,4(K,A), with1538

A separable and of dimension 2, 4 or 8 over K.1539

Lemma 8.6. Let G be a group of collineations of B3,1(A,K), with A a separable quadratic al-1540

ternative division algebra over the field K, with d = dimKA ∈ {2, 4, 8}, containing PO+
d+6(K,A)1541

and containing a transitive homology group. Then G contains PO
+
d+6(K,A).1542

Proof. It suffices to show that, for each norm r ∈ K, there exists a member of G mapping a given1543

quadratic form describing B3,1(A,K) to an r-multiple. We consider, with previous notation, the1544

quadratic form1545

X−3X3 +X−2X2 +X−1X1 − norm(X0).

As in the proof of Lemma 8.4, we set1546 
α = (∗, ∗, ∗, 0, 0, 0, 0),
β = (0, 0, 0, 0, ∗, ∗, ∗),
L = ⟨(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0)⟩.
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Since r is a norm, there exists some a ∈ A with norm(a) = r. Consider the plane πa spanned1547

by L and the point pa = (0, 0, 1, a, r, 0, 0). Let π1 be the plane spanned by L and p1 =1548

(0, 0, 1, 1, 1, 0, 0). Then there exists some homology h with axes α and β mapping π1 to πa.1549

Now p1 and pa are the unique points of π1 and πa, respectively, collinear to the fixed points1550

(0, 1, 0, 0, 0, 0, 0) and (0, 0, 0, 0, 0, 0, 1). Hence, the point p1 is mapped by h to pa. Since all1551

points of α∪ β are fixed, the matrix of h is diagonal, and hence, this diagonal is, up to a scalar1552

multiple, equal to (1, 1, 1,M, r, r, r), where M is a d × d matrix with as first column a (in its1553

coordinates over K; the action is on the right). It follows that h is a similitude with factor r1554

and the lemma is proved. □1555

Lemma 8.7. Let p be a point of F4,4(K,A), with A separable and of dimension 2, 4 or 8 over1556

K. Then Π+(p) ∼= PO
+
d+6(K,A) and Π(p) ∼= POd+6(K,A).1557

Proof. This time, the set of homologies obtained from Proposition 8.1 is not (necessarily) geo-1558

metric. However, Lemma 5.8 still shows that Π+(p) is generated by a set of homologies, which1559

contains a transitive group of homologies. It already shows that Π+(p) ≤ POd+6(K,A), such1560

that Π+(p) contains a similitude with an arbitrary norm as factor.1561

However, since splitting the forms over F (see above) produces the exceptional buildings of types1562

E6,E7,E8 for d = 2, 4, 8, respectively, and in these buildings, an odd projectivity always switches1563

the natural classes of maximal singular subspaces of the hyperbolic quadratic associated to the1564

splitting of the symps (as can be read off of Table 2 of [5] in the lines labelled (D4), (D5) and1565

(D7)), we deduce that Π+(p) ≤ PO
+
d+6(K,A).1566

Now we select a point q opposite p and restrict the projectivity group Π(p) to self-projectivities1567

using only perspectivities between points of the extended equator geometry Ê(p, q). Then1568

Proposition 6.1 implies that every reflection is contained in Π(p), seen as a polar space. Hence,1569

POd+6(K,A) ≤ Π(p) and the previous paragraphs and Lemma 8.6 imply now that Π(p) contains1570

POd+6(K,A). But since Π+(p) ≤ PO
+
d+6(K,A), because Π+(p) has index at most 2 in Π(p) and1571

PO
+
d+6(K,A) has exactly index 2 in POd+6(K,A), all projectivity groups now follow. □1572

9. Projectivity groups of non-maximal residues in metasymplectic spaces1573

We start with the residues isomorphic to generalised quadrangles, that is, buildings of type1574

B2 (or C2). The groups PO5(K) and PO
+
d+4(K,A), with A a separable quadratic alternative1575

division algebra over K of dimension 2, 4 or 8, are similarly defined as their higher dimensional1576

analogues above. We then have the following lemma.1577

Lemma 9.1. Let F be a simplex of type {1, 4} of a building ∆ := F4(K,A). Then Π+(F ) =1578

Π(F ). If A = K′ is an inseparable extension of K, when charK = 2, then Π(F ) ∼= PSp4(K′,K);1579

this includes K = K′ for charK = 2. If K = A, then Π(F ) ∼= PO5(K) ∼= PSp(K). If A is1580

separable with dimKA ∈ {2, 4, 8}, then Π(F ) ∼= PO
+
d+4(K,A).1581

Proof. The fact that Π+(F ) = Π(F ) follows from [5, Lemma 5.2]. More concretely, let F1 =1582

{x1, ξ1} be an incident point-symp pair of F4,1(K,A), and let F2 = {x2, ξ2} be an opposite1583

point-symp pair. Let x3 /∈ {x1, x2} be a point on the imaginary line defined by x1 and x2, that1584

is, x3 ∈ {x1, x2}⊥⊥⊥⊥ \ {x1, x2}. Finally, let ξ3 be a symp through x3, intersecting E(x1, x2) in a1585

point of the hyperbolic line of E(x1, x2), defined by E(x1, x2) ∩ ξi, i = 1, 2. Since E(x1, x2) is1586

either a symplectic, a mixed, a unitary, or a thick non-embeddable polar space, we can choose1587

ξ3 disjoint from ξ1 ∪ ξ2, and it follows that ξ3 is opposite both ξ1 and ξ2. Now one can check1588

that F1 ⊼ F2 ⊼ F3 ⊼ F1 is the identity.1589

Set F = {x, ξ}, with x of type 1 and ξ of type 4. By Theorem 3.1, Π∗(F ) is the group induced1590

on Res∆(F ) by the little projective group G† of ∆. Then also Res∆(ξ) is stabilised and it follows1591

that Π+(F ) is the restriction of the stabiliser of x in Π+(ξ) to Res∆(F ). All assertions now1592

follow. □1593
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We note the following isomorphisms (for appropriate definitions of the unitary groups, similarly1594

to their higher dimensional analogues):1595

PO5(K) ∼= PSp4(K); PO
+
6 (K,L) ∼= U4(L/K); PO

+
8 (K,H) ∼= U4(H),

where L is a separable quadratic extension of K, and H is a quaternion division algebra over K.1596

We now turn to the planes and the rank 1 residues. Recall the notion of a standard polarity in1597

planes PG(2,A), with A a quadratic alternative division algebra over K (see Remark 7.8).1598

Lemma 9.2. If F is a simplex of a building ∆ := F4(K,A), whose residue is isomorphic to1599

PG(2,B), with B ∈ {K,A}, then Π+(F ) ∼= PGL3(B) and Π(F ) ∼= PGL3(B) ⋊ 2, where the1600

extension is with a standard polarity if B = A, and with an ordinary orthogonal polarity if1601

B = K. If Res∆(F ) is the rank 1 building over B, then Π+(F ) = Π(F ) ∼= PGL2(B), if B = K or,1602

if the standard involution of B is trivial; otherwise Π+(F ) = PGL+2 (B) and Π(F ) ∼= PGL2(B).1603

Proof. Let α be a plane of F4,1(K,A), let ξ be a symplecton containing α and set F = {α, ξ}1604

(then F is a simplex of type {3, 4} of the corresponding building). By Theorem 3.1, Π+(F )1605

is induced by the little projective group G† of the building. Since also Π+({ξ}) is induced1606

by G†, we find that Π+(F ) contains the stabiliser of α in the group Π+({ξ}) . The latter is1607

determined in Corollary 8.3 (for the inseparable case), Lemma 8.5 and Lemma 8.7 (for the other1608

cases). These stabilisers are the full linear groups, hence, Π+(F ) = PGL3(K). Similarly, if F is1609

a simplex of type {1, 2}, then Π+(F ) = PGL3(A). Now we determine the general groups. So1610

we exhibit a self-projectivity of length 3. Let F = {x, L}, with x a point incident with some1611

line of F4,i(K,A), with i ∈ {1, 4}, and let F ′ = {x′, L′} be an opposite simplex. The residue1612

of F induces a plane π in E(x, x′), viewed as polar space (the set of points symplectic with1613

both x and x′ via a symp through L). Similarly, the residue of F ′ also induces a plane π′ in1614

E(x, x′). Now, let ζ be a symp through L, intersecting E(x, x′) in a point w ∈ π. The plane1615

β′ through L′ nearest to ζ is characterised by the property that every symp ζ ′ through β′ is1616

special to ζ. It follows that such symps ζ ′ intersect E(x, x′) in a point symplectic to E(x, x′)∩ζ.1617

This implies that these intersections form the projection of w to π′. Hence, we can consider a1618

self-projectivity of length 3 in a symp of F4,5−i(K,A). If i = 4, then it suffices to consider a1619

self-projectivity in a parabolic polar space, and a direct computation shows that this is always1620

a linear duality. If i = 1, then, according to Lemma 7.9 (which is valid for arbitrary A and not1621

only for A = O), this is a standard polarity.1622

Now suppose that F has size 3. Then the residue of F is also a residue in a residue that1623

is a projective plane, and hence, Π+(F ) is the same as the special projectivity group in that1624

projective plane. Completely similarly as in the previous paragraph, a self-projectivity of length1625

3 can be equivalently seen as a self-projectivity of length 3 of either (the lower residue of) a line1626

or a planar line pencil. This reduces the determination of Π(F ) to the polar spaces C3,1(A,K)1627

and B3,1(K,A). For the former, the results follow from Proposition 7.1, Proposition 7.2 and1628

Remark 7.3; for the latter, it follows from Section 7.1.1. □1629

We note the following isomorphisms:

PO3(K) ∼= PGL2(K); PO
+
4 (K,L) ∼= PGL+2 (L/K);

PO
+
6 (K,H) ∼= PGL+2 (H),PO

+
10(K,O) ∼= PGL+2 (O),

where L is a separable quadratic extension of K, H is a quaternion division algebra over K, and1630

O an octonion division algebra over K.1631

10. Conclusion for buildings of type F41632

We summarise the results obtained in the previous two sections for metasymplectic spaces in1633

the following concluding theorem, including a tabular form.1634
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Theorem 10.1. Let F4(K,A) be a building of type F4, with K a field, and A a quadratic1635

alternative division algebra over K. Let F be a simplex with irreducible residue. Then Π+(F )1636

and Π(F ) are as given in Table 1, where1637

∗ L denotes a separable quadratic extension of K,1638

∗ H denotes a quaternion division algebra over K,1639

∗ O denotes a Cayley (octonion) division algebra over K,1640

∗ K′ denotes an inseparable extension of K, with charK = 2,1641

∗ A′ denotes a separable quadratic alternative division algebra over K with dimKA′ = d ∈1642

{2, 4, 8}.1643

Reference ∆ Res∆(F ) cotyp(F ) Π+(F ) Π(F )

(A1)

F4(K,A) A1(K) {1}, {2} PGL2(K) PGL2(K) ✓

F4(K,K) A1(K) {3}, {4} PGL2(K) PGL2(K)

F4(K,A′) A1(A′) {3}, {4} PO
+
d+2(K,A′) POd+2(K,A′)

(A2)

F4(K,A) A2(K) {1, 2} PGL3(K) PGL3(K)⋊ 2

F4(K,A) A2(A) {3, 4} PGL3(A) PGL3(A)⋊ 2

F4(K,K′) A2(K) {1, 2} PGL3(K) PGL3(K)⋊ 2

(B2)
F4(K,K) B2(K,K)

{2, 3}
PO5(K) PO5(K) ✓

F4(K,A′) B2(K,A′) PO
+
d+4(K,A′) PO

+
d+4(K,A′) ✓

(C2) F4(K,K′) B2(K,K′) {2, 3} PSp4(K′,K) PSp4(K′,K) ✓

(B3)
F4(K,K) B3(K,K)

{1, 2, 3}
PO7(K) PO7(K)

F4(K,A′) B3(K,A′) PO
+
d+6(K,A′) POd+6(K,A′)

(C3)

F4(K,K) C3(K,K)

{2, 3, 4}

PSp6(K) PSp6(K) ✓

F4(K,L) C3(L,K) U6(L/K) U6(L/K) ✓

F4(K,H) C3(H,K) U6(H) U6(H) ✓

F4(K,O) C3(O,K) E
28
7,3(O) E

28
7,3(O) ✓

F4(K,K′) C3(K′,K) PSp6(K′,K) PSp6(K′,K) ✓

Table 1. Projectivity groups in the exceptional case F4

The last column of Table 1 contains a checkmark (✓), if [5, Lemma 5.2] automatically yields1644

Π+(F ) = Π(F ); see also Section 4.2. Note that there are other cases, for which Π+(F ) = Π(F )1645

generically holds, in contrast to the simply laced case, see [5].1646
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